NOTE: You don't need to submit this problem set, it is just to help you prepare for the final exam. Solutions will be posted on the web.

Reading: FPE, Sections 7.6 and 7.10.2.

Problems:

1. (exam material) In class we derived the closed-loop system obtained with dynamic output feedback in (x, \hat{x})-coordinates:

$$
\binom{\dot{x}}{\dot{\hat{x}}}=\left(\begin{array}{cc}
A & -B K \\
L C & A-L C-B K
\end{array}\right)\binom{x}{\hat{x}}
$$

and later rewrote it in (x, e)-coordinates. Rewrite the same system in (\hat{x}, e)-coordinates.
2. (exam material) Consider the plant transfer function $G(s)=\frac{1}{s(s+1)}$.
a) Find any controllable and observable state-space realization of $G(s)$.
b) Stabilize the state-space system from part a) by dynamic output feedback. Select arbitrary controller and observer poles such that the closed-loop system is stable and has reasonable damping (in your judgement).
c) Compute the transfer function of the controller you found in part b). Write it in the form $k D(s)$, where k is a scalar gain (not to be confused with the state feedback gain matrix K) and $D(s)$ is a ratio of monic polynomials (leading coefficients equal 1).
d) Draw the (positive) root locus for $L(s)=D(s) G(s)$ and find on it the locations of the closed-loop poles you chose in part b).
e) Draw the Bode plot for $k D(s) G(s)$ and compute the gain margin and phase margin.
f) Decide whether you're happy with the closed-loop system. If not, go back and improve the design.
3. (not exam material) Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}+x_{2} \\
\dot{x}_{2} & =-x_{1}+x_{2}+u \\
y & =2 x_{1}+x_{2}
\end{aligned}
$$

and suppose that the control objective is to minimize the performance index $\int_{0}^{\infty}\left[\rho y^{2}(t)+u^{2}(t)\right] d t, \rho>0$.
a) Show graphically the locations of the optimal closed-loop poles as the parameter ρ varies (symmetric root locus).
b) See why in the limit as $\rho \rightarrow 0$ ("expensive control" case), the optimal closed-loop poles become mirror images of the open-loop poles across the imaginary axis.
c) See why in the limit as $\rho \rightarrow \infty$ ("cheap control" case), one optimal closed-loop pole cancels the open-loop zero and the other moves off to $-\infty$.

