Reading: FPE, Sections 7.5, 7.7, 7.8, notes on state-space control by Prof. Belabbas (the "legacy documents" section of the course website). Note: some material is developed differently in the book than in class; in these cases, the knowledge of the class approach is mandatory while the knowledge of the book approach is optional.
Problems: (you can use MATLAB to perform necessary matrix computations)

1. Consider the system

$$
\dot{x}=\left(\begin{array}{ccc}
0 & -1 & 2 / 3 \\
-1 & -2 & 1 \\
0 & -3 & 1
\end{array}\right) x+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) u
$$

a) Using the procedure described in class (based on converting to CCF), design a full-state feedback law $u=-K x$ which places the closed-loop poles at -10 and $-10 \pm 5 j$.
b) If the real parts of the desired closed-loop poles were -100 instead of -10 , what would happen to the control gains? Give a conceptual answer to this question, without making any extra calculations.
2. Consider the system

$$
\dot{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right) x+\binom{1}{b} u, \quad y=\left(\begin{array}{ll}
1 & 1
\end{array}\right) x
$$

a) Derive the transfer function using the formula given in class, keeping b a general constant.
b) Show that for $b=0$, there is a pole/zero cancellation in the transfer function and loss of controllability in the system.
3. Determine (from the observability matrix) whether or not the following systems are observable.
a) $\dot{x}=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right) x, \quad y=x_{2}$
b) $\dot{x}=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -5 \\ 3 & 3 & -2\end{array}\right) x, \quad y=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) x$
4. For the system

$$
\dot{x}=\left(\begin{array}{ccc}
0 & -1 & 2 / 3 \\
-1 & -2 & 1 \\
0 & -3 & 1
\end{array}\right) x, \quad y=x_{2}
$$

design an observer with observer poles (poles of $A-L C$) placed at -20 and $-20 \pm 2 j$. (Follow the procedure described in class, which involves solving the corresponding pole placement problem for an auxiliary system $\dot{x}=F x+G u$.)
5. Consider the system

$$
\dot{x}=\left(\begin{array}{ccc}
0 & -1 & 2 / 3 \\
-1 & -2 & 1 \\
0 & -3 & 1
\end{array}\right) x+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) u, \quad y=x_{2}
$$

Combine the results of the Problems 1 and 4 to obtain a controller in the form of dynamic output feedback (observer plus estimated state feedback). Write down the state-space model of the controller as well as its transfer function (you can use MATLAB command ss2tf to compute the latter).

