Plan of the Lecture

- Review: prototype 2nd-order system; transient response specifications
- Today's topic: system-modeling diagrams; interconnections; linearization

Goal: develop a methodology for representing and analyzing systems by means of block diagrams

System Modeling Diagrams

$$
\text { large system } \underset{\text { compose }}{\stackrel{\text { decompose }}{\rightleftharpoons}} \text { smaller blocks (subsystems) }
$$

- this is the core of systems theory

We will take smaller blocks from some given library and play with them to create/build more complicated systems.

All-Integrator Diagrams

Our library will consist of three building blocks:

integrator

summing junction

constant gain

Two warnings:

- We can (and will) work either with u, y (time domain) or with U, Y (s-domain) - will often go back and forth
- When working with block diagrams, we typically ignore initial conditions.

This is the lowest level we will go to in lectures; in the labs, you will implement these blocks using op amps.

Example 1

Build an all-integrator diagram for

$$
\ddot{y}=u \quad \Longleftrightarrow \quad s^{2} Y=U
$$

This is obvious:

or

Example 2

(building on Example 1)

$$
\begin{aligned}
\ddot{y}+a_{1} \dot{y}+a_{0} y=u \quad & \Longleftrightarrow s^{2} Y+a_{1} s Y+a_{0} Y \\
& \text { or } \quad Y(s)=\frac{U(s)}{s^{2}+a_{1} s+a_{0}}
\end{aligned}
$$

Always solve for the highest derivative:

$$
\ddot{y}=\underbrace{-a_{1} \dot{y}-a_{0} y+u}_{=v}
$$

Example 3

Build an all-integrator diagram for a system with transfer function

$$
H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}
$$

Step 1: decompose $H(s)=\frac{1}{s^{2}+a_{1} s+a_{0}} \cdot\left(b_{1} s+b_{0}\right)$

- here, X is an auxiliary (or intermediate) signal

Note: $b_{0}+b_{1} s$ involves differentiation, which we cannot implement using an all-integrator diagram. But we will see that we don't need to do it directly.

Example 3, continued

Step 1: decompose $H(s)=\frac{1}{s^{2}+a_{1} s+a_{0}} \cdot\left(b_{1} s+b_{0}\right)$

Step 2: The transformation $U \rightarrow X$ is from Example 2:

Example 3, continued

Step 3: now we notice that

$$
Y(s)=b_{1} s X(s)+b_{0} X(s)
$$

and both X and $s X$ are available signals in our diagram. So:

Example 3, continued

All-integrator diagram for $H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$

Can we write down a state-space model corresponding to this diagram?

Example 3, continued

State-space model:

$$
\begin{aligned}
s^{2} X & =U-a_{1} s X-a_{0} X \\
\ddot{x} & =-a_{1} \dot{x}-a_{0} x+u
\end{aligned}
$$

$$
\begin{aligned}
Y & =b_{1} s X+b_{0} X \\
y & =b_{1} \dot{x}+b_{0} x
\end{aligned}
$$

Example 3, continued

State-space model:

$$
\begin{array}{cc}
\ddot{x}=-a_{1} \dot{x}-a_{0} x+u & y=b_{1} \dot{x}+b_{0} x \\
x_{1}=x, x_{2}=\dot{x} \\
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u & y=\left(\begin{array}{ll}
b_{0} & b_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{array}
$$

This is called controller canonical form.

- Easily generalizes to dimension >1
- The reason behind the name will be made clear later in the semester

Example 3, wrap-up

All-integrator diagram for $H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$

State-space model:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u \quad y=\left(\begin{array}{ll}
b_{0} & b_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Important: for a given $H(s)$, the diagram is not unique. But, once we build a diagram, the state-space equations are unique (up to coordinate transformations).

Basic System Interconnections

Now we will take this a level higher - we will talk about building complex systems from smaller blocks, without worrying about how those blocks look on the inside (they could themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary "low-level" detail ...)

Block diagrams describe the flow of information

Basic System Interconnections: Series \& Parallel

Series connection

(G is common notation for t.f.'s)

$$
\frac{Y}{U}=G_{1} G_{2}
$$

(for SISO systems, the order of G_{1} and G_{2} does not matter)
Parallel connection

$$
\frac{Y}{U}=G_{1}+G_{2}
$$

Basic System Interconnections: Negative Feedback

Find the transfer function from R (reference) to Y

$$
\begin{aligned}
U & =R-W \\
Y & =G_{1} U \\
& =G_{1}(R-W) \\
& =G_{1} R-G_{1} G_{2} Y
\end{aligned}
$$

$$
\Longrightarrow Y=\frac{G_{1}}{1+G_{1} G_{2}} R
$$

Basic System Interconnections: Negative Feedback

$$
\Longrightarrow Y=\frac{G_{1}}{1+G_{1} G_{2}} R
$$

The gain of a negative feedback loop:

$$
\frac{\text { forward gain }}{1+\text { loop gain }}
$$

This is an important relationship, easy to derive - no need to memorize it.

Unity Feedback

Other feedback configurations are also possible:

This is called unity feedback - no component on the feedback path.
Common structure (saw this in Lecture 1):

- $R=$ reference
- $U=$ control input
- $Y=$ output
- $E=$ error
- $G_{1}=$ plant (also denoted by P)
- $G_{2}=$ controller or compensator (also denoted by C or K)

Unity Feedback

Let's practice with deriving transfer functions: $\frac{\text { forward gain }}{1+\text { loop gain }}$

- Reference R to output Y :

$$
\frac{Y}{R}=\frac{G_{1} G_{2}}{1+G_{1} G_{2}}
$$

- Reference R to control input U :

$$
\frac{U}{R}=\frac{G_{2}}{1+G_{1} G_{2}}
$$

- Error E to output Y :

$$
\frac{Y}{E}=G_{1} G_{2} \quad(\text { no feedback path })
$$

Block Diagram Reduction

Given a complicated diagram involving series, parallel, and feedback interconnections, we often want to write down an overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for examples.

General strategy:

- Name all the variables in the diagram
- Write down as many relationships between these variables as you can
- Learn to recognize series, parallel, and feedback interconnections
- Replace them by their equivalents
- Repeat

Review: State-Space Models

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner.

What if the models are nonlinear?

- Linearization!

Example: Pendulum

Newton's 2nd law (rotational motion):

$=$ pendulum torque + external torque

$$
\text { pendulum torque }=\underbrace{-m \mathrm{~g} \sin \theta}_{\text {force }} \cdot \underbrace{\ell}_{\text {lever arm }}
$$

moment of inertia $J=m \ell^{2}$

$$
-m \mathrm{~g} \ell \sin \theta+T_{\mathrm{e}}=m \ell^{2} \ddot{\theta}
$$

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

Example: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

(nonlinear equation)

For small θ, use the approximation $\sin \theta \approx \theta$

$$
\begin{gathered}
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \\
\text { State-space form: } \theta_{1}=\theta, \theta_{2}=\dot{\theta} \\
\binom{\dot{\theta}_{1}}{\dot{\theta}_{2}}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}=-\frac{\mathrm{g}}{\ell} \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \\
-\frac{\mathrm{g}}{\ell}
\end{gathered}
$$

Linearization

Taylor series expansion:

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { linear approximation around } x=x_{0}
\end{aligned}
$$

Control systems are generally nonlinear:
$\dot{x}=f(x, u)$
nonlinear state-space model
$x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \quad u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{m}\end{array}\right) \quad f=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$
Assume $x=0, u=0$ is an equilibrium point: $f(0,0)=0$
This means that, when the system is at rest and no control is applied, the system does not move.

Linearization

Linear approx. around $(x, u)=(0,0)$ to all components of f :

$$
\dot{x}_{1}=f_{1}(x, u), \quad \ldots, \quad \dot{x}_{n}=f_{n}(x, u)
$$

For each $i=1, \ldots, n$,

$$
\begin{aligned}
f_{i}(x, u)=\underbrace{f_{i}(0,0)}_{=0} & +\frac{\partial f_{i}}{\partial x_{1}}(0,0) x_{1}+\ldots+\frac{\partial f_{i}}{\partial x_{n}}(0,0) x_{n} \\
& +\frac{\partial f_{i}}{\partial u_{1}}(0,0) u_{1}+\ldots+\frac{\partial f_{i}}{\partial u_{m}}(0,0) u_{m}
\end{aligned}
$$

Linearized state-space model:

$$
\dot{x}=A x+B u, \quad \text { where } A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\substack{x=0 \\ u=0}}, B_{i k}=\left.\frac{\partial f_{i}}{\partial u_{k}}\right|_{\substack{x=0 \\ u=0}}
$$

Important: since we have ignored the higher-order terms, this linear system is only an approximation that holds only for small deviations from equilibrium.

Example: Pendulum, Revisited

Original nonlinear state-space model:

$$
\begin{aligned}
& \dot{\theta}_{1}=f_{1}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=\theta_{2} \quad-\text { already linear } \\
& \dot{\theta}_{2}=f_{2}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=-\frac{\mathrm{g}}{\ell} \sin \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
\end{aligned}
$$

Linear approx. of f_{2} around equilibrium $\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=(0,0,0)$:

$$
\begin{array}{lll}
\frac{\partial f_{2}}{\partial \theta_{1}}=-\frac{\mathrm{g}}{\ell} \cos \theta_{1} & \frac{\partial f_{2}}{\partial \theta_{2}}=0 & \frac{\partial f_{2}}{\partial T_{\mathrm{e}}}=\frac{1}{m \ell^{2}} \\
\left.\frac{\partial f_{2}}{\partial \theta_{1}}\right|_{0}=-\frac{\mathrm{g}}{\ell} & \left.\frac{\partial f_{2}}{\partial \theta_{2}}\right|_{0}=0 & \left.\frac{\partial f_{2}}{\partial T_{\mathrm{e}}}\right|_{0}=\frac{1}{m \ell^{2}}
\end{array}
$$

Linearized state-space model of the pendulum:

$$
\dot{\theta}_{1}=\theta_{2}
$$

$$
\dot{\theta}_{2}=-\frac{\mathrm{g}}{\ell} \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \quad \text { valid for small deviations from equ. }
$$

General Linearization Procedure

- Start from nonlinear state-space model

$$
\dot{x}=f(x, u)
$$

- Find equilibrium point $\left(x_{0}, u_{0}\right)$ such that $f\left(x_{0}, u_{0}\right)=0$ Note: different systems may have different equilibria, not necessarily $(0,0)$, so we need to shift variables:

$$
\begin{aligned}
& \underline{x}=x-x_{0} \quad \underline{u}=u-u_{0} \\
& \underline{f}(\underline{x}, \underline{u})=f\left(\underline{x}+x_{0}, \underline{u}+u_{0}\right)=f(x, u)
\end{aligned}
$$

Note that the transformation is invertible:

$$
x=\underline{x}+x_{0}, \quad u=\underline{u}+u_{0}
$$

General Linearization Procedure

- Pass to shifted variables $\underline{x}=x-x_{0}, \underline{u}=u-u_{0}$

$$
\begin{aligned}
\underline{\dot{x}} & =\dot{x} \quad\left(x_{0} \text { does not depend on } t\right) \\
& =f(x, u) \\
& =\underline{f}(\underline{x}, \underline{u})
\end{aligned}
$$

- equivalent to original system
- The transformed system is in equilibrium at $(0,0)$:

$$
\underline{f}(0,0)=f\left(x_{0}, u_{0}\right)=0
$$

- Now linearize:

$$
\underline{\dot{x}}=A \underline{x}+B \underline{u}, \quad \text { where } A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\substack{x=x_{0} \\ u=u_{0}}}, B_{i k}=\left.\frac{\partial f_{i}}{\partial u_{k}}\right|_{\substack{x=x_{0} \\ u=u_{0}}}
$$

General Linearization Procedure

- Why do need the shift $\underline{x}=x-x_{0}, \underline{u}=u-u_{9}$?
- This requires some thought. Indeed, we may talk about a linear approximation of any smooth function f at any point x_{0} :
$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad-f\left(x_{0}\right)$ does not have to be 0
- The key is that we want to approximate a given nonlinear system $\dot{x}=f(x, u)$ by a linear system $\dot{x}=A x+B u$ (may have to shift coordinates:
$\left.x \mapsto x-x_{0}, u \mapsto u-u_{0}\right)$
Any linear system must have an equilibrium point at $(x, u)=(0,0)$:

$$
f(x, u)=A x+B u \quad f(0,0)=A 0+B 0=0
$$

