ECE 486: Control Systems

Lecture 8B: Proportional-Derivative (PD) Control




Key Takeaways

This lecture describes proportional-derivative control. The
controller sets the plant input with two terms: (i) proportional
to the error and (ii) proportional to the derivative of the error.

Key properties of PD control:

1. Some plants cannot be stabilized by P or Pl control. This
motivates the use of PD.

A basic implementation of PD control will amplify noise.

Common implementations use a “smoothed” derivative or
a direct measurement of the derivative of the output.




Rocket Attitude Control

Rockets require precise control of their heading direction
(attitude) to reach their desired final destination.
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u:= Thrust angle (rad)

y:= Heading angle (rad)




Model of Rocket Attitude Dynamics

If |lu| < 1and |y| « 1 then the dynamics _ v Gs) |12
are approximated by:

4(t) + a1y(t) + aoy(t) = bou(t) + bo d(t)
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Proportional Control

Model of rocket attitude:

4(t) + a1y(t) + aoy(t) = bou(t) + bo d(t)
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where: a; =0—, ap = —0.12—, and by = 6.32—
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Sub u = K, (r — y) into plant model:
y(t) + a1 y(t) + (a0 + bo Kp) y(t) = (bo k) 7(¢) + bo d(?)
~~ e
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The coefficient of y is = 0 and is unaffected by K. The closed-
loop will be unstable.

The rocket dynamics cannot be stabilized by P-control.
Moreover it cannot be stabilized by Pl-control (Routh-Hurwitz
criterion can be applied to show this).



Proportional-Derivative (PD) Control

Closed-loop, proportional-derivative control for rocket:
1. User specifies the desired heading angle, r(t)
2. Controller computes the tracking error e(t) = r(t)-y(t)
3. Controller sets input thrust angle to:

u(t) = Kpe(t) + Kqé(t)

where K, and K, are gains to be selected.
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Effect of P and D Terms

P Control: u(t) = Kpe(t)
K, affects settling time, steady-state error, control input

PD Control: ©(t) = Kpe(?)

Use two gains to independently modify the transient and
steady-state characteristics:

P-Term: Reacts to present (current error).

D-Term: Reacts to future (derivative of error), i.e. e
indicates the direction the error is headed. Has no effect
in steady-state.




Model for Closed-Loop Control

Recall the second-order model for the rocket:
§(t) + ary(t) + aoy(t) = bou(t) + bo d(t)

Substitute u = K,e + K; e and combine terms:

§(t) + (a1 + boKa) y(t) + (a0 + bo Ky) y(t) = (boKa) 7(t) + (bokSp) r(¢) + bod(t)
~ N’
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This is a second-order closed-loop model from (r,d) to y.
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Closed-Loop Response

The dynamics of the closed-loop system are:

y(t) + (a1 + boKa) y(t) + (a0 + boKp) y(t) = (boKa) 7(t) + (boKp) r(t) + bod(t)
N — ————
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* Closed-loop is stable if and only if a,+b,K >0, a,+b,K,>0.

* We can place the two closed-loop poles anywhere by
proper choice of (K, K,). [Always true if plant is 2"d order.]

 We are able to use the derivative term to modify the
damping and stabilize the rocket attitude dynamics.




Example of PD Control

* Simulate with gains (K, K;) = (0.75,0.47) and
r(t) = 0.1rad,
d(t) = —0.01rad fort = 5sec

* Closed-loop is underdamped with:
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Effect of Noise

* Simulate with gains (K, K;) = (0.75,0.47) and
r(t) = 0.1rad,

Sensor noise n(t) for t = 5sec [Zero mean, Standard Dev=0.005]

o
Y

o
o
o3

o

o

(o]
T

Heading Angle (rad)

o
(=]
e

o
(@)
N

=

@

o

o

3

Time (sec)



Effect of Noise

* Simulate with gains (K, K;) = (0.75,0.47) and
r(t) = 0.1rad,
Sensor noise n(t) for t = 5sec [Zero mean, Standard Dev=0.005]

Derivative control can lead to large control inputs due to fast
changes in the reference command or sensor noise.
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Implementations for PD Control

1. Use K;v where v is an approximate (smoothed) derivative:

2. Rate-feedback implementation:
u(t) = Kp (r(t) — y(t)) — Kay(?)
This form avoids differentiating the reference. It typically

uses a direct measurement of y.




