ECE 486: Control Systems

Lecture 7B: Open-Loop Control

Key Takeaways

This lecture describes open-loop control.

Open-loop control does not require a sensor and hence it can lead to a cheaper system. It can be effective if:

- 1. The plant is stable,
- 2. The disturbances are small, and
- 3. The model is accurate.

If any of these conditions fails, then open-loop control will either fail to achieve stability (if the plant is unstable) or will not provide accurate tracking.

Open-Loop Control

Open-loop control for DC motor:

- 1. User specifies the desired motor speed, *r*(*t*)
- 2. Controller sets input voltage to $u(t) = K_{ol} r(t)$ where K_{ol} is a gain to be selected.

Model for Open-Loop Control

Recall the first-order model for the motor: $\dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$ where: $a_0 = 0.94 \frac{1}{sec}$ and $b_0 = 766.8 \frac{rad}{sec^2 V}$

$$G(s) = \frac{b_0}{s + a_0}$$

Substitute $u = K_{ol} r$ into the model: $\dot{y}(t) + a_0 y(t) = (b_0 K_{ol}) r(t) + b_0 d(t)$

Open-Loop Response

The dynamics of the open-loop system are:

 $\dot{y}(t) + a_0 y(t) = (b_0 K_{ol}) r(t) + b_0 d(t)$

The response has the following properties:

1. The system has a single pole with $\tau = \frac{1}{a_0} \approx 1.06 \ sec$ and settling time $3\tau = 3.18 \ sec$. This is the same as for *G(s)*.

2. If
$$r(t) = \overline{r}$$
 and $d(t) = \overline{d}$ then:
 $y(t) \rightarrow \frac{b_0 K_{ol}}{a_0} \overline{r} + \frac{b_0}{a_0} \overline{d}$ as $t \rightarrow \infty$

Select $K_{ol} = \frac{a_0}{b_0} = \frac{1}{G(0)} \approx 0.0012 \frac{V \, sec}{rad}$ so that $y(t) \to \overline{r}$ if no disturb.

Response of Open-Loop System

Simulations with:

- $r(t) = 1000 \frac{rad}{sec}$ and $r(t) = 2000 \frac{rad}{sec}$ for $t \ge 0$
- d(t) = -0.2V for $t \ge 5$ sec
- $K_{ol} = \frac{1}{G(0)}$, i.e. exact value of G(0) is known.

Open-loop control does not reject disturbances.

Impact of Model Uncertainty

Simulations with:

- $r(t) = 1000 \frac{rad}{sec}$
- $\pm 10\%$ variation in (a_0, b_0) in plant dynamics.

Open-loop control is sensitive to model variations.

