ECE 486: Control Systems

Lecture 4C: Second-Order Step Response




Key Takeaways

This lecture covers the step response for second-order systems.

The step response of a stable, second-order system.

1. Is characterized by the natural frequency and damping ratio of
the system

2. Has overshoot and oscillations if the system is underdamped.




Second-Order Step Response

Consider the second-order system:
§(t) + a1y(t) + aoy(t) = bou(t)
: : G(s) _ bg
with (0) =0, y(0) =0 s24+ays+ag
u(t)=1forallt >0

The system is stable (both roots in LHP) if and only if a;, a,>0.
For stable systems, the coefficients are typically redefined:

() + 2¢wy () + wy y(t) = boul(t)
~—~— ~—~

where:
* w, ‘= Natural frequency (rad/sec)
e (:= Damping ratio (unitless)



Overdamped/Underdamped Systems

Stable, second-order system:

. . b

(1) + 2Cwng(t) +wny(t) = bou(t)  G(S) = wraceataz
Two poles are given by:

S10 = —Cwp T wnpy/(? —1

Three cases depending on {? — 1:
* Overdamped, ¢ = 1: Roots are real and distinct
* Critically Damped, ¢ = 1: Roots are real and both ats; , = —(wj

* Underdamped, { < 1: Roots are a complex conjugate pair.




Overdamped/Underdamped Systems

Stable, second-order system:

. . b

(1) + 2Cwng(t) +wny(t) = bou(t)  G(S) = wraceataz
Two poles are given by:

S10 = —Cwp T wnpy/(? —1

Over/Critically damped
solutions (red/blue) are
similar to first-order
response.

1.4

—_—
N
T

—_—
T

&
o
T

&
»
T

Unit Step Response

©
~

Underdamped solution
(yellow) has overshoot
0 1 2 3 4 5 and oscillations.

Time (sec)




Underdamped Poles

If { < 1 then the poles are:
8172 — —Cwn ::jwn\/l — (:2

N————
=Wy
Imaginary part w, is called the
the damped natural frequency. X. T Wa
Time constant is: wn
g
T — _1 o0 {>
Cwn ‘5 i .
— _Cwn
Angle 0 is given by:
Angle decreases for e
Real

smaller values of (.



Underdamped Poles

If { < 1then the poles are:
51,2 — _Cwn = ]wn\/l — CQ

Example:
j(t) + 29(t) + 10y(t) = 10u(t)  G(5) = w5310

w2 =10 = w, =10 ~ 3.27%

sec X. T Wa

2 2 2_ 0.3 g

Cwn i C 2 /10 . -.,..‘.{)

= : -
2 rad B b
Wqg — Wnp \/ 1 — C = 3@ ‘
| X~ 1o,

S12=—1=x3) -




Underdamped Poles

If { < 1then the poles are:
51,2 ::__CQML::jQ%%N/l'_'CZ

Example:
iJ(t) +29(t) + 10y(t) + 10u(t)  G(5) = 7w

>> G = tf£(10,[1 2 10]);

o)

% Display poles, damping ratio, nat. fregs., time
constants

>> damp (G)
Pole Damping Frequency Time Constant
(rad/seconds) (seconds)
-1.00e+00 + 3.00e+001 3.16e-01 3.16e+00 1.00e+00
-1.00e+00 - 3.00e+001i 3.16e-01 3.16e+00 1.00e+00



Key Features: Stable, Underdamped Step Response

b

Sin(wdt)) where 7 := —g
wﬂ,

G
Vi

y(t) =19 (1 — e~ cos(wgt) — e oWt

* Final Value: y = G(0)u

Settling Time: T, = =2

* Peak Overshoot: 37, = ¢ Vi where M, = ¥T2)=0

e Peak Time: Tp SR
W
1.8

* Rise Time: T, ~ —




Underdamped Step Response

y(t) =7 (1 — et cog(wgt) — e~wnt \/1<—7g2 sin(wdt)) where 7 1= "]

n
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Underdamped Step Response

. b
y(t) =7 | 1 — e “nt cos(wqt) — e~ ¢ sin(wat) | where § := —
V1= (2 w2
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TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admissible

pole locations for the 2nd-order system
2
$2+ 2wns +wi  (s+0)? + w3

where 0 = (w,,
wg = wpV1—C2

Step response: y(t) =1 — e ¢ <cos(wdt) + sin(wdt))

Im

X Wd = Wp m

: ¢
o= Cwn 0 Re w2 =0%+ w?l




Rise Time in Frequency Domain

Suppose we want t, < ¢ (c is some desired given value)
1.8 1.8

= —<c = Wp = —
W, c

Geometrically, we want poles to lie in the shaded region:

Im

1.8

Wy = —
\ Re

0

(recall that wy, is the magnitude of the poles)



Settling Time in Frequency Domain

Suppose we want t; < ¢

ts =

<c - o>

Q| w
alw

Want poles to be sufficiently fast (large enough magnitude of
real part):

Im

Intuition: poles far to the
left — transients decay
faster — smaller ¢,

Re

Slalw
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