ECE 486: Control Systems

Lecture 18B: Cauchy's Argument Principle

Key Takeaways

This lecture presents a result known as Cauchy's Argument Principle for a transfer function *G(s)*.

To state the principle:

- Let Γ be a simple, closed curve in the complex plane.
- Let N_p and N_z denote the number of poles and zeros of G(s) that lie inside the curve Γ.
- Cauchy's Argument Principle: G(s) is evaluated on the curve Γ will encircle the origin (Nz Np) times.

This result is used to state a theorem to assess stability of a feedback system using Nyquist plots.

Notation

Let Γ be a simple, closed curve in the complex plane:

- Simple: The curve does not intersect itself
- Closed: End point of the curve is the same as the starting point.

Notation

Let Γ be a simple, closed curve in the complex plane:

- Simple: The curve does not intersect itself
- Closed: End point of the curve is the same as the starting point.

G(Γ) denotes the curve obtained by mapping each complex number $s_0 \in \Gamma$ to another complex number $G(s_0)$.

Notation

Let Γ be a simple, closed curve in the complex plane:

- Simple: The curve does not intersect itself
- Closed: End point of the curve is the same as the starting point.

G(Γ) denotes the curve obtained by mapping each complex number $s_0 \in \Gamma$ to another complex number $G(s_0)$.

Cauchy's Argument Principle

Define:

- N_p :=Number of poles of G(s) inside the curve Γ .
- N_z :=Number of zeros of G(s) inside the curve Γ .
- **Principle:** Assume Γ does not pass through any poles or zeros of *G*(*s*). Then:
- The closed curve $G(\Gamma)$ encircles the origin Nz –Np times.
- If $N_z N_p > 0$ then $G(\Gamma)$ encircles the origin clockwise (CW).
- If $N_z N_p < 0$ then $G(\Gamma)$ encircles the origin counterclockwise (CCW).

G(s)=s-1 shifts Γ_{R} to the left by one unit.

- N_p :=Number of poles of G(s) inside the curve $\Gamma = 0$
- N_z :=Number of zeros of G(s) inside the curve $\Gamma = 1$
- $\rightarrow G(\Gamma_R)$ encircles the origin $N_z N_p = 1 > 0$ times CW.

G(s)=s+1 shifts Γ_R to the right by one unit.

- N_p :=Number of poles of G(s) inside the curve $\Gamma = 0$
- N_z :=Number of zeros of G(s) inside the curve $\Gamma = 0$
- $\rightarrow G(\Gamma_{\rm R})$ encircles the origin $N_z N_p = 0$ times.

 $G(s)=s^2-3s+2$ evaluated on Γ_R is a more complicated curve.

- N_p :=Number of poles of G(s) inside the curve $\Gamma = 0$
- N_z :=Number of zeros of G(s) inside the curve $\Gamma = 2$
- $\rightarrow G(\Gamma_R)$ encircles the origin $N_z N_p = 2 > 0$ times (CW).

 $G(s) = \frac{2s+4}{s-1}$ evaluated on Γ_{R} is a more complicated curve.

- N_p :=Number of poles of G(s) inside the curve $\Gamma = 1$
- N_z :=Number of zeros of G(s) inside the curve $\Gamma = 0$
- $\rightarrow G(\Gamma_R)$ encircles the origin $N_z N_p = -1 < 0$ times (CCW).

