ECE 486: Control Systems

Lecture 18B: Cauchy’s Argument Principle




Key Takeaways

This lecture presents a result known as Cauchy’s Argument
Principle for a transfer function G(s).

To state the principle:
 LetI be asimple, closed curve in the complex plane.

* Let N,and N, denote the number of poles and zeros of G(s)
that lie inside the curve I

Cauchy’s Argument Principle: G(s) is evaluated on the curve I'
will encircle the origin (Nz - Np) times.

This result is used to state a theorem to assess stability of a
feedback system using Nyquist plots.



Notation

Let I be a simple, closed curve in the complex plane:
Simple: The curve does not intersect itself

Closed: End point of the curve is the same as the starting point.
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Notation

Let I be a simple, closed curve in the complex plane:
Simple: The curve does not intersect itself
Closed: End point of the curve is the same as the starting point.

G(I') denotes the curve obtained by mapping each complex
number sy € I' to another complex number G (sg).
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Notation

Let I be a simple, closed curve in the complex plane:
Simple: The curve does not intersect itself
Closed: End point of the curve is the same as the starting point.

G(I') denotes the curve obtained by mapping each complex
number sy € I' to another complex number G (sg).
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Cauchy’s Argument Principle

Define:

* N,:=Number of poles of G(s) inside the curve I'.
* N_,=Number of zeros of G(s) inside the curve I.

Principle: Assume I does not pass through any poles or zeros
of G(s). Then:

* The closed curve G (I') encircles the origin Nz -Np times.
* IfN,-N,>0then G(T) encircles the origin clockwise (CW).

* IfN,-N,<0then G(T) encircles the origin counter-
clockwise (CCW).




Example 1

G(s)=s-1 shifts I'; to the left by one unit.

* N,:=Number of poles of G(s) inside the curve I" =0
* N_,:=Number of zeros of G(s) inside the curveI' =1
— G(I'y) encircles the origin N, -N, = 1>0 times CW.
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Example 2

G(s)=s+1 shifts I'; to the right by one unit.

* N,:=Number of poles of G(s) inside the curve I" =0
* N_,:=Number of zeros of G(s) inside the curve I' =0
— G(I'}) encircles the origin N, =N, = 0 times.
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Example 3

G(s)=s?-3s+2 evaluated on I'; is a more complicated curve.
* N,:=Number of poles of G(s) inside the curve I" =0

* N_,:=Number of zeros of G(s) inside the curve I =2

— G(I'y) encircles the origin N, -N, = 2 >0 times (CW).
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Example 4

G(s) = 255:’14 evaluated on I'; is a more complicated curve.
* N,:=Number of poles of G(s) inside the curve I =1
* N_,:=Number of zeros of G(s) inside the curve I' =0

— G(I'y) encircles the origin N, -N, = -1 <0 times (CCW).
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