ECE 486: Control Systems

» Lecture 15: Bode plots for three types of transfer functions
and general LTT systems

Goal: learn to analyze and sketch magnitude and phase plots of
transfer functions written in Bode form (arbitrary products of

three types of factors).

Reading: FPE, Section 6.1



Review: Scale Convention for Bode Plots

H magnitude ‘ phase ‘

horizontal scale

log

log

vertical scale

log

linear

Advantage of the scale convention: we will learn to do Bode
plots by starting from simple factors and then building up to
general transfer functions by considering products of these

simple factors.




Preview: Bode’s Gain-Phase Relationship
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Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

|

H low freq. ‘ real zero/pole ‘ complex zero/pole ‘

mag. slope

n

up/down by 1

up/down by 2

phase

n x 90°

up/down by 90°

up/down by 180°

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ~ Magnitude Slope x 90°



Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term
in each factor equal to 1, i.e., lump all DC gains into one
number in the front.

Example:

rewrite as




Three Types of Factors

Transfer functions in Bode form will have three types of factors:

1. Ko(jw)™, where n is a positive or negative integer
2. (jwr + 1)*!

g w1
3, [() yocl¥ oy 1]

Wn Wn

In our example above,

KG(jw) = -

- (5o) (5]

Type 2 Type 3

Now let’s discuss Bode plots for factors of each type.



Type 1: Ko(jw)"

Magnitude: log M = log|Ko(jw)"| = log|Ko| + nlogw

— as a function of logw, this is a line of slope n passing
through the value log |Ky| at w =1

In our example, we had Kq(jw) !

slope = -1 (for this example) 7

— this is called a low-frequency asymptote (will see why later)



Type 1: Ko(jw)"

Phase: ZKy(jw)" = Z(jw)" =nljw =n-90°
— this is a constant, independent of w.

In our example, we had Ko(jw) ™!
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— here, the phase is —90° for all w.



Type 2: jwr +1

Magnitude plot:

1/7

For a stable real zero, the magnitude slope “steps up by 1”7 at
the break-point.



Type 2: jwr +1

Phase plot:
90°

450l

1/|T

For a stable real zero, the phase “steps up by 90°” as we go
past the break-point.



Type 2: (jwr +1)7!

This is a stable real pole.

Magnitude:
log | ——| = —1 ] 1
Og'jwr—l—l‘ og |jwt + 1|
Phase:
4 1 L(jwr + 1)
— = —/(jwT
Jwt + 1 J

So the magnitude and phase plots for a stable real pole are the
reflections of the corresponding plots for the stable real zero
w.r.t. the horizontal axis:

» step down by 1 in magnitude slope
» step down by 90° in phase



Example: Type 1 and Type 2 Factors

~2000(s +0.5)
KGO) = o)+ 50

Convert to Bode form:

Jw
2000-0.5- 1 =— +1
(0.5 + >
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Example 1: Magnitude

Transfer function in Bode form:

KG(jw) = Ji (é“; + 1) . (j,w 1)1<jw +1)

Type 1 term:

» Ky=2,n=—1—it contributes a line of slope —1 passing
through the point (w =1, M = 2).

» This is a low-frequency asymptote: for small w, it gives
very large values of M, while other terms for small w are
close to M =1 (since log1 = 0).

Now we mark the break-points, from Type 2 terms:

» w =0.5 stable zero = slope steps up by 1

» w =10 stable pole = slope steps down by 1

> w =050 stable pole = slope steps down by 1
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Example 1: Phase

Transfer function in Bode form:

KG() = 5 ((]f? * 1) | (jw . 1>1<J'w . 1>

Type 1 term:
» n = —1 — phase starts at —90°
Type 2 terms:
» w=0.5 stable zero = phase up by 90° (by 45° at

w=0.5)
» w =10 stable pole = phase down by 90° (by 45° at
w = 10)

» w =050 stable pole = phase down by 90° (by 45° at
w = 50)



Example 1: Phase Plot
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N2 ‘ -1
Type 3: [(i—“) +2Cfu—(f"—l—1]

This is a stable complex pole.

Magnitude:
1 Jw 2 Jw
log M = log 3 = —log () +2(—+1
j j w w
(%) +2¢2% +1 " "
Phase:
1 Jjw 2 Jjw
¢=L7— ' =—Z|{—) +2¢—+1
() +2¢2 +1 wn wn



Type 3: Magnitude, Complex Pole Case

How does the magnitude plot look? Depends on the value of (:
M(w)
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The magnitude hits its peak value (for ¢ < 1/4/2 ~ 0.707) at

wr = wpV1 -2 <w,



Type 3: Magnitude

For small enough ¢ (below 1/4/2), the magnitude of
1
N2 :
() +2¢2 +1

Wn

has a resonant peak at the resonant frequency

wr = wpy/ 1 —2¢2.
Likewise, the magnitude of

. 2 .
w w
<j> +202 41

w

wn n

has a resonant dip at w;.



Type 3 Zero: Magnitude

slope =0

For a stable real zero, the magnitude slope “steps up by 2” at
the break-point.



Type 3 Pole: Magnitude

slope =0

For a stable real pole, the magnitude slope “steps down by 2”
at the break-point.



N2 .
Type 3: (i}—”) +2¢Z% + 1, Phase

2 4
Take a look at the real and imaginary parts of (%) +2¢2° +1

(R(w), [(w))

Phase:
> for w < wy, ¢ ~ 0° (real and positive)
» for w=wp, » =90° (Re =0, Im > 0)
> for w > wy, ¢ ~ 180° (Re ~ —w?, Im ~ w)
For a stable complex zero, the phase steps up by 180° as we go

through the breakpoint; as ¢ — 0, the transition through the
break-point gets sharper, almost step-like.

For a pole, the phase is multiplied by —1.



Type 3: Phase

175.
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(stable complex zero — phase steps up by 180°)

-100.

-125.

-150.

-175.

Wn

(stable complex pole — phase steps down by 180°)



Example 2

KG(s) =

0.01 (s* +0.015 + 1)

2
2 (2 40022 41
s<4+.2+

— already in Bode form

What can we tell about magnitude?

>

0.01
with Ko = 0.01, n = =2
(jw)?
— asymptote has slope = —2, passes through
(w=1,M =0.01)
complex zero with break-point at w, =1 and ¢ = 0.005 —
slope up by 2; large resonant dip

low-frequency term

complex pole with break-point at w, =2 and { = 0.01 —
slope down by 2; large resonant peak



Example 2: Magnitude Plot
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Example 2

0.01 (s24+0.01s + 1
KG(s) = (52 . )
52 ( + 0.025 + 1)

— already in Bode form

4

What can we tell about phase?

)2 with Ko =0.01, n = -2
Jjw
— phase starts at n x 90° = —180°

» complex zero with break-point at w, = 1 — phase up by
180°

» complex pole with break-point at w,, = 2 — phase down by
180°

» since ( is small for both pole and zero, the transitions are
very sharp

» low-frequency term



Example 2: Phase Plot
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Unstable Zeros/Poles?

So far, we’ve only looked at transfer functions with stable poles
and zeros (except perhaps at the origin). What about RHP?

Example: consider two transfer functions,

s+1 s—1
Gi(s) = P and Ga(s) = P

Note:
» (31 has stable poles and zeros; G5 has a RHP zero.
> Magnitude plots of G; and G are the same —

, jw+1 w2+1
G pr— P—
Gr()] ‘jw+5‘ W2 +5
, jw —1 w?+1
G pr— p—
(G2()] ‘jw+5‘ Wl +5

» All the difference is in the phase plots!



Phase Plot for G

. jw+ 1 1jw+1
Gl(jw):], —zJ
Jjw+5H S Jw

5

1
» Low-frequency term: 5(jw)0— n = 0, so phase starts at 0°

» Break-points at w, = 1 (phase goes up by 90°) and at
wy, = 5 (phase goes down by 90°)




Phase Plot for G5

Cjw—1 1ljw—1
C jw+5 5w
5

Ga(jw)

+1

New type of behavior —
> wr0: ¢~ 180° (real and negative)
> w1 $A~90° (Re=—1, Im=w:>> 1)
> w1l ¢ 135°

For a RHP zero, the phase starts out at 180° and goes down
by 90° through the break-point (135° at break-point).



Phase Plot for G5
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For a RHP zero, the phase plot is similar to what we had for a
LHP pole: goes down by 90° ... However, it starts at 180°,
and not at 0°.



Minimum-Phase and Nonminimum-Phase Zeros
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Among all transfer functions with the same magnitude plot,
the one with only LHP zeros has the minimal net phase
change as w goes from 0 to co — hence the term
minimum-phase for LHP zeros.



Bode’s Gain-Phase Relationship

R—“L»Q—» K |—|aGs)
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Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

|

H low freq. ‘ real zero/pole ‘ complex zero/pole ‘

mag. slope

n

up/down by 1

up/down by 2

phase

n x 90°

up/down by 90°

up/down by 180°

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ~ Magnitude Slope x 90°



