
ECE 486: Control Systems

I Lecture 15: Bode plots for three types of transfer functions
and general LTI systems

Goal: learn to analyze and sketch magnitude and phase plots of
transfer functions written in Bode form (arbitrary products of
three types of factors).

Reading: FPE, Section 6.1



Review: Scale Convention for Bode Plots

magnitude phase

horizontal scale log log

vertical scale log linear

Advantage of the scale convention: we will learn to do Bode
plots by starting from simple factors and then building up to
general transfer functions by considering products of these
simple factors.



Preview: Bode’s Gain-Phase Relationship

G(s) Y
+
�R K

Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

low freq. real zero/pole complex zero/pole

mag. slope n up/down by 1 up/down by 2

phase n× 90◦ up/down by 90◦ up/down by 180◦

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦



Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term
in each factor equal to 1, i.e., lump all DC gains into one
number in the front.

Example:
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Three Types of Factors

Transfer functions in Bode form will have three types of factors:

1. K0(jω)n, where n is a positive or negative integer

2. (jωτ + 1)±1
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In our example above,
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Now let’s discuss Bode plots for factors of each type.



Type 1: K0(jω)
n

Magnitude: logM = log |K0(jω)n| = log |K0|+ n logω

— as a function of logω, this is a line of slope n passing
through the value log |K0| at ω = 1

In our example, we had K0(jω)−1:
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— this is called a low-frequency asymptote (will see why later)



Type 1: K0(jω)
n

Phase: ∠K0(jω)n = ∠(jω)n = n∠jω = n · 90◦

— this is a constant, independent of ω.

In our example, we had K0(jω)−1:
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— here, the phase is −90◦ for all ω.



Type 2: jωτ + 1

Magnitude plot:
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For a stable real zero, the magnitude slope “steps up by 1” at
the break-point.



Type 2: jωτ + 1

Phase plot:
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For a stable real zero, the phase “steps up by 90◦” as we go
past the break-point.



Type 2: (jωτ + 1)−1

This is a stable real pole.

Magnitude:

log
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Phase:

∠
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So the magnitude and phase plots for a stable real pole are the
reflections of the corresponding plots for the stable real zero
w.r.t. the horizontal axis:

I step down by 1 in magnitude slope

I step down by 90◦ in phase



Example: Type 1 and Type 2 Factors

KG(s) =
2000(s+ 0.5)

s(s+ 10)(s+ 50)

Convert to Bode form:
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Example 1: Magnitude

Transfer function in Bode form:
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Type 1 term:

I K0 = 2, n = −1 — it contributes a line of slope −1 passing
through the point (ω = 1,M = 2).

I This is a low-frequency asymptote: for small ω, it gives
very large values of M , while other terms for small ω are
close to M = 1 (since log 1 = 0).

Now we mark the break-points, from Type 2 terms:

I ω = 0.5 stable zero ⇒ slope steps up by 1

I ω = 10 stable pole ⇒ slope steps down by 1

I ω = 50 stable pole ⇒ slope steps down by 1



Example 1: Magnitude Plot
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Example 1: Phase

Transfer function in Bode form:
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Type 1 term:

I n = −1 — phase starts at −90◦

Type 2 terms:

I ω = 0.5 stable zero ⇒ phase up by 90◦ (by 45◦ at
ω = 0.5)

I ω = 10 stable pole ⇒ phase down by 90◦ (by 45◦ at
ω = 10)

I ω = 50 stable pole ⇒ phase down by 90◦ (by 45◦ at
ω = 50)



Example 1: Phase Plot

KG(jω) =
2

jω
·
(
jω

0.5
+ 1

)
· 1(

jω

10
+ 1

)(
jω

50
+ 1

)

0.001 0.01 0.1 1 10 100 1000

-160.

-140.

-120.

-100.

-80.

-60.

-40.

! = 0.5
! = 10

! = 50



Type 3:
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This is a stable complex pole.

Magnitude:
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Type 3: Magnitude, Complex Pole Case

How does the magnitude plot look? Depends on the value of ζ:
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Type 3: Magnitude

For small enough ζ (below 1/
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2), the magnitude of

1(
jω
ωn

)2
+ 2ζ jω

ωn
+ 1

has a resonant peak at the resonant frequency

ωr = ωn

√
1− 2ζ2.

Likewise, the magnitude of(
jω

ωn

)2

+ 2ζ
jω

ωn
+ 1

has a resonant dip at ωr.



Type 3 Zero: Magnitude
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For a stable real zero, the magnitude slope “steps up by 2” at
the break-point.



Type 3 Pole: Magnitude
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For a stable real pole, the magnitude slope “steps down by 2”
at the break-point.



Type 3:
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Phase:

I for ω � ωn, φ ≈ 0◦ (real and positive)

I for ω = ωn, φ = 90◦ (Re = 0, Im > 0)

I for ω � ωn, φ ≈ 180◦ (Re ∼ −ω2, Im ∼ ω)

For a stable complex zero, the phase steps up by 180◦ as we go
through the breakpoint; as ζ → 0, the transition through the
break-point gets sharper, almost step-like.

For a pole, the phase is multiplied by −1.



Type 3: Phase
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Example 2

KG(s) =
0.01

(
s2 + 0.01s+ 1

)
s2
(
s2

4
+ 0.02

s

2
+ 1

) — already in Bode form

What can we tell about magnitude?

I low-frequency term
0.01

(jω)2
with K0 = 0.01, n = −2

— asymptote has slope = −2, passes through
(ω = 1,M = 0.01)

I complex zero with break-point at ωn = 1 and ζ = 0.005 —
slope up by 2; large resonant dip

I complex pole with break-point at ωn = 2 and ζ = 0.01 —
slope down by 2; large resonant peak



Example 2: Magnitude Plot

0.001 0.01 0.1 1 10

-75.

-50.

-25.

0.

25.

50.

75.

M (dB)



Example 2

KG(s) =
0.01

(
s2 + 0.01s+ 1

)
s2
(
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4
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) — already in Bode form

What can we tell about phase?

I low-frequency term
0.01

(jω)2
with K0 = 0.01, n = −2

— phase starts at n× 90◦ = −180◦

I complex zero with break-point at ωn = 1 — phase up by
180◦

I complex pole with break-point at ωn = 2 — phase down by
180◦

I since ζ is small for both pole and zero, the transitions are
very sharp



Example 2: Phase Plot
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Unstable Zeros/Poles?

So far, we’ve only looked at transfer functions with stable poles
and zeros (except perhaps at the origin). What about RHP?

Example: consider two transfer functions,

G1(s) =
s+ 1

s+ 5
and G2(s) =

s− 1

s+ 5

Note:

I G1 has stable poles and zeros; G2 has a RHP zero.

I Magnitude plots of G1 and G2 are the same —
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I All the difference is in the phase plots!



Phase Plot for G1
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I Low-frequency term:
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5
(jω)0— n = 0, so phase starts at 0◦

I Break-points at ωn = 1 (phase goes up by 90◦) and at
ωn = 5 (phase goes down by 90◦)
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Phase Plot for G2
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New type of behavior —

I ω ≈ 0: φ ≈ 180◦ (real and negative)

I ω � 1: φ ≈ 90◦ (Re = −1, Im = ω � 1)

I ω ≈ 1: φ ≈ 135◦

For a RHP zero, the phase starts out at 180◦ and goes down
by 90◦ through the break-point (135◦ at break-point).



Phase Plot for G2
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For a RHP zero, the phase plot is similar to what we had for a
LHP pole: goes down by 90◦ ... However, it starts at 180◦,
and not at 0◦.



Minimum-Phase and Nonminimum-Phase Zeros
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Among all transfer functions with the same magnitude plot,
the one with only LHP zeros has the minimal net phase
change as ω goes from 0 to ∞ — hence the term
minimum-phase for LHP zeros.



Bode’s Gain-Phase Relationship
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+
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Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

low freq. real zero/pole complex zero/pole

mag. slope n up/down by 1 up/down by 2

phase n× 90◦ up/down by 90◦ up/down by 180◦

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦


