ECE 486: Control Systems

Lecture 13A: Steady-State Sinusoidal Response




Key Takeaways

The transfer function G(s) is used to express the solution of a
stable linear system forced by a sinusoidal input.

If the input is u(t) = sin(wt) then the response satlsfles ,
y(t) = |G(jw)|sin( wt + 26(jw) ) as t = ©g J&gé

The output converges to a sinusoid at the same frequeneyas
the input but with amplitude scaled by |G(jw)| and phase is
shifted by £2G(jw).




Problem 1

Consider the following first-order system and sinusoidal input:
—2y(t) — y(t) = 3u(t) u(t) = 5sin(4t + 0.1)

A) What is the magnitude and phase of G(jw)?

B) Is the steady-state response bounded? If yes, what is it?

Consider the following first-order system and sinusoidal input:
—2y(t) + y(t) = 3u(t) u(t) = 5sin(4t + 0.1)

C) What is the magnitude and phase of G(jw)?

D) Is the steady-state response bounded? If yes, what is it?




Solution 1A and 1B

Consider the following first-order system and sinusoidal input:

—2y(t) — y(t) = 3ult) u(t) = 5sin(fl_t +0.1)
A) What is the magnitude and phase of G(jw)? “

B) Is the steady-state response bounded? If yes, what i |Is it?
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Solution 1C and 1D

Consider the following first-order system and sinusoidal input:
— 29(t) + y(t) = 3u(t) u(t) = 5sin(4t + 0.1)

C) What is the magnitude and phase of G(jw)? =

D) Is the steady-state response bounded? If yes what is it?
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Solution 1-Extra Space




Problem 2

The figure shows the output y(t) generated by a linear system G(s)
with input u(t) = A, cos(w,t).

A) What are the values of A, and o, for the input signal u(t)?

{B) What is the magnitude |G(jo,)|? _“;Lg—a b

C) What is the phase £G(jw,) in degrees?
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Solution 2A

A) What are the values of A; and o, for the input signal u(t)?
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Solution 2B and 2C

B) What is the magnitude |G(joy)|? W, = % M/Ju
C) What is the phase £G(jw,) in degrees? A‘G‘(/M:)f ‘% rud * ’_T@r‘); %
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ECE 486: Control Systems

Lecture 13B: Bode Plots




Key Takeaways

A Bode plot for an LTI system G(s) consists of two subplots:
* Magnitude (Gain) vs. frequency and
* Phase vs. frequency.

Such plots are useful to understand the steady-state response
of the system G(s) to sinusoids of different frequencies.




Problem 3

A linear system G(s) with input u and output y has the Bode plot
shown below.

A) What is |G(10j)| in dB
and actual units?

B) What is £G(10j) in degs
and radians? -
C) What is the output 10°

response y(t) in steady-state
for the input u(t) =2

Bode Diagram
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D) What is the steady-state
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value of y(t) if the inputis a Frequency (rad/sec)

unit step u(t) =1 forallt>0?



Solution 3A and 3B

A) What is |G(10j)| in dB and actual units?
B) What is £G(10j) in degs and radians?
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Solution 3C

C) What is the output response y(t) in steady-state for the input u(t)
=2 cos(10t)?
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Solution 3D

D) What is the steady-state value of y(t) if the input is a unit step u(t)
=1forallt>0?
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Solution 3-Extra Space
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ECE 486: Control Systems

Lecture 13C: Bode Plots for First-Order Systems




Key Takeaways

This lecture focuses on Bode plots for first order systems.

The Bode plot for G(s) = -22 has the following key features:

St+ag

* The pole defines a corner frequency (w = |agy|) for the system.

 The magnitude is flat at low frequencies and rolls off at —20dB
per decade at high frequencies.

* The phase transitions by £90° near the corner frequency with
precise details depending on the signs of (by, ag).

The Bode plot for G(s) = S;’;O has the similar features except:

* The zero defines a corner frequency (w = |by|) for the system.
* The magnitude rolls up at +20dB per decade at high frequencies.




Problem 4

Sketch approximate, straight-line Bode plots for the
following systems:

A) G(S) — 3i4
B) G(S) — 2328




Solution 4A
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Solution 4B
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Solution 4C
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Solution 4-Extra Space




