ECE486: Control Systems

- Lecture 12A: Root Locus Rules DEF

Goal: Introduce Root Locus Rules DEF.

Reading: FPE, Chapter 5

Reminder: Root Locus

where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}, m \leq n$

Root locus: the set of all $s \in \mathbb{C}$ that solve the characteristic equation

$$
a(s)+K b(s)=0
$$

as K varies from 0 to ∞.

Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.
A point $s \in \mathbb{C}$ is on the RL if and only if

$$
L(s)=\underbrace{-\frac{1}{K}}_{\text {negative and real }} \text { for some } K>0
$$

This gives us an equivalent characterization:
The phase condition: The root locus of $1+K L(s)$ is the set of all $s \in \mathbb{C}$, such that $\angle L(s)=180^{\circ}$, i.e., $L(s)$ is real and negative.

Reminder: Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches (= number of open loop poles)
- Rule B - start points (= open loop poles)
- Rule C - end points (= open loop zeros)
- Rule D - real locus (located relative to real open-loop poles/zeros)
- Rule E - asymptotes
- Rule F - $j \omega$-crossings

Last time, we have covered Rules A-C

Example

Let's consider $\quad L(s)=\frac{s+1}{s(s+2)\left((s+1)^{2}+1\right)}$
\rightarrow Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches

- Rule B: branches start at open-loop poles $s=0, s=-2, s=-1 \pm j$
- Rule C: branches end at open-loop zeros $s=-1, \pm \infty$

Example, continued

Three more rules:

- Rule D: real locus
- Rule E: asymptotes
- Rule F: $j \omega$-crossings

Rules D and E are both based on the fact that

$$
1+K L(s)=0 \text { for some } K>0 \quad \Longleftrightarrow \quad L(s)<0
$$

Characteristic equation in our example:

$$
\begin{aligned}
& \underbrace{s(s+2)\left((s+1)^{2}+1\right)}_{a(s)}+K \underbrace{(s+1)}_{b(s)}=0 \\
& s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K=0
\end{aligned}
$$

- don't even think about factoring this polynomial!!

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

$$
\begin{aligned}
\angle L(s) & =\angle \frac{b(s)}{a(s)} \\
& =\angle \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)} \\
& =\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)
\end{aligned}
$$

- this sum must be $\pm 180^{\circ}$ for any s that lies on the RL.

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)-\left[\angle\left(s_{1}-p_{1}\right)+\angle\left(s_{1}-p_{2}\right)+\angle\left(s_{1}-p_{3}\right)+\angle\left(s_{1}-p_{4}\right)\right] \\
& \quad=0^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=-180^{\circ} \quad \checkmark s_{1} \text { is on RL }
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)-\left[\angle\left(s_{2}-p_{1}\right)+\angle\left(s_{2}-p_{2}\right)+\angle\left(s_{2}-p_{3}\right)+\angle\left(s_{2}-p_{4}\right)\right] \\
& \quad=180^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=0^{\circ} \quad \times s_{2} \text { is not on RL }
\end{aligned}
$$

Rule D: Real Locus

Rule D: If s is real, then it is on the RL of $1+K L$ if and only if there are an odd number of real open-loop poles and zeros to the right of s.

Rule E: Asymptotes

How does the locus look as $s \rightarrow \infty$?

$$
\begin{aligned}
180^{\circ}=\angle L(s) & =\angle \frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots} \\
& =\angle \frac{s^{m-n}+b_{1} s^{m-n-1}+\ldots}{1+a_{1} s^{-1}+\ldots} \\
& \simeq \angle s^{m-n} \text { if }|s| \rightarrow \infty \quad(\text { recall } m \leq n)
\end{aligned}
$$

Claim: If $\angle s^{m-n}=180^{\circ}$, then

$$
\angle s=\frac{180^{\circ}+\ell \cdot 360^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
$$

Proof:

$$
\begin{aligned}
& s=|s| e^{j \angle s} \quad s^{m-n}=|s|^{m-n} e^{j(m-n) \angle s} \\
& \angle s^{m-n}=180^{\circ} \quad \Longrightarrow \quad(m-n) \angle s=180^{\circ}+\ell \cdot 360^{\circ}
\end{aligned}
$$

Rule E: Asymptotes

Rule E: Branches near ∞ have phase

$$
\begin{aligned}
\angle s & \simeq \frac{180^{\circ}+\ell \cdot 360^{\circ}}{n-m} \\
& =\frac{(2 \ell+1) \cdot 180^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
\end{aligned}
$$

Note: if $m=n$, then there are no branches at ∞.

Back to Example: Rule E

Branches near ∞ have phase

$$
\angle s=\frac{(2 \ell+1) \cdot 180^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
$$

In our example, $L(s)=\frac{s+1}{s(s+2)\left((s+1)^{2}+1\right)} \quad\left\{\begin{array}{l}n=4 \\ m=1\end{array}\right.$

$$
\begin{array}{ll}
& \angle s=\frac{(2 \ell+1) \cdot 180^{\circ}}{3}, \quad \ell=0,1,2 \\
\ell=0: & \frac{2 \cdot 0+1}{3} 180^{\circ}=60^{\circ} \\
\ell=1: & \frac{2 \cdot 1+1}{3} 180^{\circ}=180^{\circ} \\
\ell=2: & \frac{2 \cdot 2+1}{3} 180^{\circ}=\frac{5}{3} 180^{\circ}=\left(2-\frac{1}{3}\right) 180^{\circ}=-60^{\circ}
\end{array}
$$

- asymptotes have angles $60^{\circ}, 180^{\circ},-60^{\circ}$

Rule F: $j \omega$-crossings

Do the branches of the root locus cross the $j \omega$ axis?
(transition from stability to instability)
Goal: determine if the equation

$$
a(j \omega)+K b(j \omega)=0
$$

has a solution $\omega \geq 0$ for some $K>0$.
Best approach here: use the Routh test to first determine the critical value of K (when the characteristic polynomial becomes unstable), then plug it in and solve for $j \omega$-crossings (numerically or analytically).

Rule F: $j \omega$-crossings

In our example, the characteristic polynomial is

$$
s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K
$$

Form the Routh array:

$$
\begin{array}{cccc}
s^{4}: & 1 & 6 & K \\
s^{3}: & 4 & 4+K & 0 \\
s^{2}: & 20-K & 4 K & \\
s^{1}: & 80-K^{2} & 0 & \\
s^{0}: & 4 K & &
\end{array}
$$

For stability, need $20-K>0,80-K^{2}>0,4 K>0$
The characteristic polynomial is stable for $K<\sqrt{80}=4 \sqrt{5}$

$$
\Longrightarrow K_{\text {critical }}=4 \sqrt{5}
$$

Rule F: $j \omega$-crossings

In our example, the characteristic polynomial is

$$
s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K
$$

The critical value: $K=4 \sqrt{5}$ (from Routh test).
To find the $j \omega$-crossing, plug in and solve:

$$
\begin{aligned}
& (j \omega)^{4}+4(j \omega)^{3}+6(j \omega)^{2}+(4+4 \sqrt{5}) j \omega+4 \sqrt{5}=0 \\
& \omega^{4}-4 j \omega^{3}-6 \omega^{2}+(4+4 \sqrt{5}) j \omega+4 \sqrt{5}=0
\end{aligned}
$$

real part: $\quad \omega^{4}-6 \omega^{2}+4 \sqrt{5}=0$
imag. part: $\quad-4 \omega^{3}+4(1+\sqrt{5}) \omega=0 \quad \omega^{2}=1+\sqrt{5}$

$$
j \omega \text {-crossing at } j \omega_{0}=\sqrt{1+\sqrt{5}} \approx 1.8, \text { when } K=4 \sqrt{5} \approx 8.9
$$

Complete Root Locus

$$
L(s)=\frac{s+1}{s(s+2)\left((s+1)^{2}+1\right)}
$$

Rule A: 4 branches

Rule B: branches start at p_{1}, \ldots, p_{4}
Rule C: branches end at $z_{1}, \pm \infty$
Rule D: real locus $=\left[z_{1}, p_{1}\right] \cup\left(-\infty, p_{2}\right]$
Rule E: asymptotes form angles at $60^{\circ}, 180^{\circ},-60^{\circ}$
Rule F: $j \omega$-crossings at $\pm j \omega_{0}$, where

$$
\omega_{0}=\sqrt{1+\sqrt{5}} \approx 1.8
$$

when $K=4 \sqrt{5} \approx 8.9$
(transition from stability to instability)

