ECE486: Control Systems

- Lecture 11B: Root Locus Rules ABC

Goal: introduce the first three rules of the Root Locus method.
Reading: FPE, Chapter 5

Reminder: Root Locus

where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}, m \leq n$

Root locus: the set of all $s \in \mathbb{C}$ that solve the characteristic equation

$$
a(s)+K b(s)=0
$$

as K varies from 0 to ∞.

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points
- Rule D - real locus
- Rule E - asymptotes
- Rule F - $j \omega$-crossings

Today, we will cover mostly Rules A-C.

Rule A: Number of Branches

$$
\begin{aligned}
1+K \frac{b(s)}{a(s)}= & 1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0 \\
\Longrightarrow\left(s^{n}+a_{1} s^{n-1}\right. & \left.+\ldots+a_{n-1} s+a_{n}\right) \\
& +K\left(s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}\right)=0
\end{aligned}
$$

Since $\operatorname{deg}(a)=n \geq m=\operatorname{deg}(b)$, the characteristic polynomial $a(s)+K b(s)=0$ has degree n.

The characteristic polynomial has n solutions (roots), some of which may be repeated. As we vary K, these n solutions also vary to form n branches.

Rule A:

$$
\#(\text { branches })=\operatorname{deg}(a)
$$

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.
Therefore:

- s is close to a root of $a(s)=0$, or
- s is close to a pole of $L(s)$

Rule B: branches start at open-loop poles.

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,
- branches end at the roots of $b(s)=0$, or
- branches end at zeros of $L(s)$

Rule C: branches end at open-loop zeros.
Note: if $n>m$, we have n branches, but only m zeros. The remaining $n-m$ branches go off to infinity (end at "zeros at infinity").

Example

PD control of an unstable 2nd-order plant

$$
\frac{Y}{R}=\frac{G_{c} G_{p}}{1+G_{c} G_{p}} \quad \text { poles: } 1+G_{c}(s) G_{p}(s)=0
$$

$$
1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)\left(\frac{1}{s^{2}-1}\right)=0
$$

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Let us write the characteristic equation in Evans form:

$$
\begin{aligned}
& 1+\underbrace{K_{\mathrm{D}}}_{K}\left(s+\frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}\right)\left(\frac{1}{s^{2}-1}\right)=1+K \underbrace{\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}-1}}_{L(s)}=0 \\
& L(s)=\frac{s-z_{1}}{s^{2}-1} \quad \text { zero at } s=z_{1}=-K_{\mathrm{P}} / K_{\mathrm{D}}<0
\end{aligned}
$$

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles $s= \pm 1$
- Rule C: branches end at open-loop zeros $\quad s=z_{1},-\infty$ (we will see why $-\infty$ later)
So the root locus will look something like this:

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?
$s^{2}-1+K\left(s-z_{1}\right)=0$

$$
s^{2}+K s-\left(K z_{1}+1\right)=0
$$

$s=-\frac{K}{2} \pm \sqrt{\frac{K^{2}}{4}+K z_{1}+1}, z_{1}<0 \quad$ as $K \rightarrow \infty, s$ will be <0

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?
Let's see if there is any value $K>0$, for which this is possible:

$$
\begin{aligned}
& 1+K L(0)=0 \\
& 1+K z_{1}=0 \quad K=-\frac{1}{z_{1}}>0 \text { does the job }
\end{aligned}
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{P}}=10
$$

$$
\begin{aligned}
G_{c}(s) & =10+5 s \\
u & =10 e+5 \dot{e}, \quad e=r-y
\end{aligned}
$$

Characteristic equation: $1+5\left(\frac{s+2}{s^{2}-1}\right)=0$

$$
s^{2}+5 s+9=0
$$

Relate to 2nd-order response: $\quad \omega_{n}^{2}=9,2 \zeta \omega_{n}=5 \Longrightarrow \zeta=5 / 6$

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.
- PD control is effective for stabilization because it introduces a zero in LHP.

But: Rules A-C cannot tell the whole story. How do we know which way the branches go, and which pole corresponds to which zero?

Rules D-F!!

