ECE 486: Control Systems

Lecture 10A: Dominant Pole Approximation

Dominant-Pole Approximation

The dominant poles of a higher-order system are the slowest poles (largest time constant).

We can often approximate a higher-order system by a:

- **1**. First-order approximation if the dominant pole is real
- 2. Second-order approximation if the dominant pole(s) are a complex pair.

The approximation is accurate if the dominant pole(s) are significantly slower than the remaining poles.

(Dominant pole time constant is 5x larger than other poles)

Problem 1

For each system:

- Construct a first-order or second-order approximation from the dominant pole.
- Do you expect the dominant pole approximation to be accurate?

For system A: Roughly sketch the unit step response of the dominant pole approximation. Note the final time, settling time, and overshoot (if underdamped).

$$G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)}$$

$$G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)}$$

Solution 1A

- Construct a first-order or second-order approximation from the dominant pole.
- Do you expect the dominant pole approximation to be accurate?
- Roughly sketch the unit step response of the dominant pole approximation.
 Note the final time, settling time, and overshoot (if underdamped).

 $G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)}$

Solution 1B

- Construct a first-order or second-order approximation from the dominant pole.
- Do you expect the dominant pole approximation to be accurate?

$$G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)}$$

Solution 1-Extra Space

ECE 486: Control Systems

Lecture 10B: Integrator Anti-windup

Key Takeaways

This lecture describes impact of actuator saturation and rate limits. These limits:

- Cause slower speed of response and
- Can lead to overshoot and oscillations if the controller does not properly account for the limits.

Anti-windup is one method to reduce the effect of saturation.

- It will prevent overshoot and oscillations.
- However, it does not change the slower speed of response which is a physical limit of the actuators.

Problem 2

Consider the following plant and PI controller:

 $\dot{y}(t) + 4y(t) = 2u(t)$ $u(t) = 5e(t) + 20\int_0^t e(\tau) d\tau$

A) What is the ODE that models the closed-loop from r to y?

B) The actuator saturates at $u \in [-3, +3]$. Do you expect saturation to cause any issues if the reference commands are in the range $r \in [-1, +1]$? If yes, then how might you alleviate the issue?

C) Suppose instead that the references are in the range $r \in [-10, +10]$. Can any controller (not just the PI controller above) achieve good reference tracking with this actuator? If not, then how would you re-select the actuator?

Solution 2A

Consider the following plant and PI controller:

 $\dot{y}(t) + 4y(t) = 2u(t)$ $u(t) = 5e(t) + 20\int_0^t e(\tau) d\tau$

A) What is the ODE that models the closed-loop from r to y?

Solution 2B

Consider the following plant and PI controller:

 $\dot{y}(t) + 4y(t) = 2u(t)$ $u(t) = 5e(t) + 20\int_0^t e(\tau) d\tau$

B) The actuator saturates at $u \in [-3, +3]$. Do you expect saturation to cause any issues if the reference commands are in the range $r \in [-1, +1]$? If yes, then how might you alleviate the issue?

Solution 2C

Consider the following plant and PI controller:

 $\dot{y}(t) + 4y(t) = 2u(t)$ $u(t) = 5e(t) + 20\int_0^t e(\tau) d\tau$

C) Suppose instead that the references are in the range $r \in [-10, +10]$. Can any controller (not just the PI controller above) achieve good reference tracking with this actuator? If not, then how would you re-select the actuator?

Solution 2-Extra Space

ECE 486: Control Systems

Lecture 10C: Control Law Implementation

Key Takeaways

It is common to implement controllers on a microprocessor. This lecture discusses some of the details associated with this implementation:

- Sample a measurement at specific (discrete) time invervals
- Update the control input *u* at each sample time.
- Hold the control input *u* constant until the next update.

The update equation is chosen to approximate the properties of the designed (ODE) controller. The update equation can be implemented on a microprocessor with a few lines of code.

Problem 3

Consider the following plant and PI controller:

 $2\dot{y}(t) + 6y(t) = 8u(t) \qquad u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) d\tau$

A) What sampling time Δt would you recommend for a discretetime implementation?

B) The value of u(t) at $t=\Delta t$ is:

$$u(\Delta t) = 2.5 e(\Delta t) + 9 \int_0^{\Delta t} e(\tau) d\tau$$

Approximate $u_1 \coloneqq u(\Delta t)$ in terms $e_0 := e(0)$ and $e_1 := e(\Delta t)$.

C) The computations in the discrete-time update are not instantaneous and require some time. How can this be modeled?

Solution 3A

 $2\dot{y}(t) + 6y(t) = 8u(t) \qquad u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) d\tau$

A) What sampling time Δt would you recommend for a discretetime implementation?

Solution 3B

 $2\dot{y}(t) + 6y(t) = 8u(t)$ $u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) d\tau$ B) The value of u(t) at *t=* Δt is:

$$u(\Delta t) = 2.5 e(\Delta t) + 9 \int_0^{\Delta t} e(\tau) d\tau$$

Approximate $u_1 \coloneqq u(\Delta t)$ in terms $e_0 := e(0)$ and $e_1 := e(\Delta t)$.

Solution 3C

 $2\dot{y}(t) + 6y(t) = 8u(t) \qquad u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) d\tau$

C) The computations in the discrete-time update are not instantaneous and require some time. How can this be modeled?

Solution 3-Extra Space