ECE 486: Control Systems

Lecture 10C: Control Law Implementation

Key Takeaways

It is common to implement controllers on a microprocessor. This lecture discusses some of the details associated with this implementation:

- Sample a measurement at specific (discrete) time invervals
- Update the control input *u* at each sample time.
- Hold the control input *u* constant until the next update.

The update equation is chosen to approximate the properties of the designed (ODE) controller. The update equation can be implemented on a microprocessor with a few lines of code.

Continuous-Time Control Design

- This course focuses on continuous-time control design.
- We use ODEs to model the plant and obtain a controller in the form of an ODE or transfer function:

PI Control:
$$K(s) = \frac{Kps + K_i}{s}$$
.

- It is common to implement the controller on a microprocessor using discrete-time updates.
- **1**. Sample the measurement every Δt seconds.
- 2. Compute the error and use a difference equation to update the control input *u*.
- **3**. Hold the control input *u* constant until the next update.

Discrete-Time Implementation

The diagram shows the three main steps:

- 1. Sampling
- 2. Control Update
- 3. Zero-Order Hold

We will describe these in detail on the next few slides.

Sampling

- Plant output y(t) is a Control, u_k 4 continuous-time signal. $\mathbf{2}$ Microprocessor samples every Δt seconds: $\mathbf{0}$ 0 $y_1 := y(\Delta t)$ $y_2 := y(2\Delta t)$ r_k $y_3 := y(3\Delta t)$
 - $y_k \coloneqq y(k \cdot \Delta t)$ is a discrete-time signal
 - Typically assume "fast" sampling, 10x faster than relevant dynamics.

Control Update

The microprocessor:

- Computes the error $e_k = r_k - y_k$
- Updates the discretetime control with a difference equation,

for example:

$$u_k = u_{k-1} + 5e_k - 4.9e_{k-1}$$

The discrete-time update, denoted $K_d(z)$, is chosen to approximate K(s). (Details later.)

Control Update

Zero-Order Hold

- The microprocessor only updates u_k when it receives a new sample.
- The discrete-time signal *u_k* must be converted to continuous-time *u(t)*.
- Zero-Order Hold (ZOH) $u(t) = u_k$ for $t \in [k\Delta t, (k+1)\Delta t)$

Discretization

• (Continuous-Time) PI Controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

• Evaluate at two consecutive time steps:

$$u((k-1)\Delta t) = K_p e((k-1)\Delta t) + K_i \int_0^{(k-1)\Delta t} e(\tau) d\tau$$
$$u(k\Delta t) = K_p e(k\Delta t) + K_i \int_0^{k\Delta t} e(\tau) d\tau$$

• Subtract these equations and use $u_k \coloneqq u(k \cdot \Delta t)$, etc:

$$u_k - u_{k-1} = K_p e_k - K_p e_{k-1} + K_i \int_{(k-1)\Delta t}^{k\Delta t} e(\tau) \, d\tau$$

Discretization

• Need to approximate the integral:

$$u_{k} - u_{k-1} = K_{p}e_{k} - K_{p}e_{k-1} + K_{i} \int_{(k-1)\Delta t}^{k\Delta t} e(\tau) d\tau$$

\$\approx 0.5 \cdot (e_{k} + e_{k-1}) \Delta t\$

• Final difference equation approximation: $u_{k} = u_{k-1} + \left(K_{p} + K_{i}\frac{\Delta t}{2}\right)e_{k} - \left(K_{p} - K_{i}\frac{\Delta t}{2}\right)e_{k-1}$

10

Matlab Example

The discretization method generalizes to nth-order controllers *K(s)*. The function c2d automates this.

$$K(s) = \frac{s^2 + 2s + 3}{4s^2 + 5s + 6}$$

 $z^2 - 1.987 z + 0.9876$ Sample time: 0.01 seconds Discrete-time transfer function.

 $u_k - 1.987u_{k-1} + 0.9876u_{k-2} = 0.2509e_k - 0.4968e_{k-1} + 0.246e_{k-2}$ $u_k = 1.987u_{k-1} - 0.9876u_{k-2} + 0.2509e_k - 0.4968e_{k-1} + 0.246e_{k-2}$