ECE 486: Control Systems

Lecture 9B: PID Tuning for Second-Order Systems

Key Takeaways

This lecture describes a method to tune PID controllers using pole placement.

For second-order systems, the approach is to:

- Use PID control and
- Select the gains to place the three closed-loop poles at desired locations.
- A PI controller (without the D-term) should be used if the plant has sufficient damping.

The choice of natural frequency (time constant) is critical.

Design Approach: Pole Placement

- Approximate the plant dynamics by a first or second-order ODE using the dominant pole approximation.
- 2. If the dynamics are first-order: Use a PI controller to place the two poles at a desired location.
- 2. If dynamics are second-order:
 - Use a PID controller to place the three poles.
 - Avoid use of derivative control if plant is well-damped. This will restrict the choice of the three poles.

A reasonable starting point is to place all poles at $s = -\omega_n$. The choice of natural frequency (time constant) is critical.

Design Approach: Pole Placement

- Approximate the plant dynamics by a first or second-order ODE using the dominant pole approximation.
- 2. If the dynamics are first-order: Use a PI controller to place the two poles at a desired location.
- 2. If dynamics are second-order:
 - Use a PID controller to place the three poles.
 - Avoid use of derivative control if plant is well-damped. This will restrict the choice of the three poles.
- **3**. Further tuning is often required. Use root locus to tune one gain at a time.
- **4**. Implementation:
 - D-control: Use smoothed derivative or rate feedback
 - I-control: Use anti-windup (to be discussed later)

PID Tuning For Second-Order Systems

Example plant model:where $a_1 = -2$, $\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$ where $a_1 = -2$, $a_0 = 17$ and $b_0 = 17$ Formal design requirements can be stated. Roughly a faster

closed-loop response will:

- lead to better reference tracking and disturbance rejection,
- but it will also increase the actuator effort and degrade the noise rejection.

Important: Second-order ODE is typically an approximate model. Formal tools to assess the impact of model uncertainty later. If the closed-loop is too fast then the unmodeled dynamics will degrade performance and may even cause instability.

Closed-Loop Model

Dynamics of the plant:

 $\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t) \qquad \text{where } a_1 = -2,$ $\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t) \qquad a_0 = 17 \text{ and } b_0 = 17$

PID controller in rate feedback form:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau - K_d \dot{y}(t)$$

Sub for *u* into plant dynamics and collect terms. Closed-loop dynamics are:

$$y^{[3]}(t) + (a_1 + b_0 K_d) \ddot{y}(t) + (a_0 + b_0 K_p) \dot{y}(t) + (b_0 K_i) y(t)$$

= $b_0 K_p \dot{r}(t) + b_0 K_i r(t) + b_0 \dot{d}(t)$

The closed-loop characteristic equation is:

$$0 = s^{3} + (a_{1} + b_{0}K_{d})s^{2} + (a_{0} + b_{0}K_{p})s + (b_{0}K_{i})$$

PID Tuning

Closed-loop characteristic equation: $0 = s^3 + (a_1 + b_0 K_d)s^2 + (a_0 + b_0 K_p)s + (b_0 K_i)$

Pole Placement:

• Select the desired poles to satisfy for some (ζ , ω_n , p):

$$0 = (s^2 + 2\zeta\omega_n s + \omega_n^2) \cdot (s+p)$$

Choose $\zeta = 1$ and $p = \omega_n$ as a starting point.

• The desired characteristic equation is:

$$0 = s^3 + (p + 2\zeta\omega_n)s^2 + (2\zeta\omega_n p + \omega_n^2)s + \omega_n^2 p$$

Match coefficients to the closed-loop characteristic equation:

$$a_1 + b_0 K_d = p + 2\zeta \omega_n$$
$$a_0 + b_0 K_p = 2\zeta \omega_n p + \omega_n^2$$
$$b_0 K_i = \omega_n^2 p$$

Solve these equations for the three gains.

Comparison of Two PID Controllers

K_1 is designed for faster response than K_2 .

Design	ζ	$\omega_n, \frac{rad}{sec}$	p	Poles, $s_{1,2}$ and s_3	M_p	τ_{settle}, sec	K_p	K_i	K_d
$K_1(s)$	1	6	6	-6, -6, -6	0	0.5	5.35	12.7	1.18
$K_2(s)$	1	3.5	3.5	-3.5, -3.5, -3.5	0	0.86	1.16	2.52	0.735

Comparison of Two PI Controllers

K_1 is designed for faster response than K_2 .

Design	ζ	$\omega_n, rac{rad}{sec}$	p	Poles, $s_{1,2}$ and s_3	M_p	τ_{settle}, sec	K_p	K_i	K_d
$K_1(s)$	1	6	6	-6, -6, -6	0	0.5	5.35	12.7	1.18
$K_2(s)$	1	3.5	3.5	-3.5, -3.5, -3.5	0	0.86	1.16	2.52	0.735

Step responses with r(t) = 4, d(t) = 2 for $t \ge 1.5$, and sensor noise for $t \ge 4$.

