ECE 486: Control Systems

Lecture 8B: Proportional-Derivative (PD) Control

Key Takeaways

This lecture describes proportional-derivative control. The controller sets the plant input with two terms: (i) proportional to the error and (ii) proportional to the derivative of the error.

Key properties of PD control:

- 1. Some plants cannot be stabilized by P or PI control. This motivates the use of PD.
- 2. A basic implementation of PD control will amplify noise.
- **3**. Common implementations use a "smoothed" derivative or a direct measurement of the derivative of the output.

Rocket Attitude Control

Rockets require precise control of their heading direction (attitude) to reach their desired final destination.

u:= Thrust angle (rad)

y:= Heading angle (rad)

Model of Rocket Attitude Dynamics

If $|u| \ll 1$ and $|y| \ll 1$ then the dynamics _____ are approximated by:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$$

where: $a_1 = 0 \frac{1}{sec}$, $a_0 = -0.12 \frac{1}{sec^2}$, and $b_0 = 6.32 \frac{1}{sec^2}$

Transfer Function: $G(s) = \frac{6.32}{s^2 - 0.12}$

Poles:

$$s_{1,2} = \pm 0.346 \frac{rad}{sec}$$

System is unstable

Proportional Control

Model of rocket attitude:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$$

where: $a_1 = 0 \frac{1}{sec}$, $a_0 = -0.12 \frac{1}{sec^2}$, and $b_0 = 6.32 \frac{1}{sec^2}$
Sub $u = K_p(r - y)$ into plant model:
 $\ddot{y}(t) + \underbrace{a_1}_{2\zeta\omega_n} \dot{y}(t) + \underbrace{(a_0 + b_0 K_p)}_{\omega_n^2} y(t) = (b_0 K_p) r(t) + b_0 d(t)$

The coefficient of \dot{y} is = 0 and is unaffected by K_p . The closed-loop will be unstable.

The rocket dynamics cannot be stabilized by P-control. Moreover it cannot be stabilized by PI-control (Routh-Hurwitz criterion can be applied to show this).

Proportional-Derivative (PD) Control

Closed-loop, proportional-derivative control for rocket:

- 1. User specifies the desired heading angle, r(t)
- 2. Controller computes the tracking error e(t) = r(t)-y(t)
- **3**. Controller sets input thrust angle to:

$$u(t) = K_p e(t) + K_d \dot{e}(t)$$

where K_p and K_d are gains to be selected.

Effect of P and D Terms

P Control: $u(t) = K_p e(t)$

 K_{p} affects settling time, steady-state error, control input

PD Control:
$$u(t) = K_p e(t) + K_d \dot{e}(t)$$

Use two gains to independently modify the transient and steady-state characteristics:

P-Term: Reacts to present (current error).

D-Term: Reacts to future (derivative of error), i.e. \dot{e} indicates the direction the error is headed. Has no effect in steady-state.

Model for Closed-Loop Control

Recall the second-order model for the rocket: $\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0 u(t) + b_0 d(t)$

Substitute $u = K_p e + K_d \dot{e}$ and combine terms:

 $\ddot{y}(t) + \underbrace{(a_1 + b_0 K_d)}_{:=2\zeta\omega_n} \dot{y}(t) + \underbrace{(a_0 + b_0 K_p)}_{:=\omega_n^2} y(t) = (b_0 K_d) \,\dot{r}(t) + (b_0 K_p) \,r(t) + b_0 d(t)$

This is a second-order closed-loop model from (r,d) to y.

Closed-Loop Response

The dynamics of the closed-loop system are:

$$\ddot{y}(t) + \underbrace{(a_1 + b_0 K_d)}_{:=2\zeta\omega_n} \dot{y}(t) + \underbrace{(a_0 + b_0 K_p)}_{:=\omega_n^2} y(t) = (b_0 K_d) \,\dot{r}(t) + (b_0 K_p) \,r(t) + b_0 d(t)$$

- Closed-loop is stable if and only if $a_0 + b_0 K_p > 0$, $a_1 + b_0 K_d > 0$.
- We can place the two closed-loop poles anywhere by proper choice of (K_p, K_d) . [Always true if plant is 2nd order.]
- We are able to use the derivative term to modify the damping and stabilize the rocket attitude dynamics.

Example of PD Control

- Simulate with gains $(K_p, K_d) = (0.75, 0.47)$ and
 - r(t) = 0.1 rad,
 - d(t) = -0.01 rad for $t \ge 5 sec$
- Closed-loop is underdamped with:

10

Effect of Noise

• Simulate with gains $(K_p, K_d) = (0.75, 0.47)$ and

• r(t) = 0.1 rad,

• Sensor noise n(t) for $t \ge 5sec$ [Zero mean, Standard Dev=0.005]

Effect of Noise

- Simulate with gains $(K_p, K_d) = (0.75, 0.47)$ and
 - r(t) = 0.1 rad,
 - Sensor noise n(t) for $t \ge 5sec$ [Zero mean, Standard Dev=0.005]

Derivative control can lead to large control inputs due to fast changes in the reference command or sensor noise.

Implementations for PD Control

1. Use $K_d v$ where v is an approximate (smoothed) derivative:

$$\dot{\hat{e}}(t) + \alpha_0 \hat{e}(t) = \alpha_0 e(t)$$
 with IC: $\hat{e}(0) = 0$
 $v(t) = \dot{\hat{e}}(t)$

2. Rate-feedback implementation:

$$u(t) = K_p \left(r(t) - y(t) \right) - K_d \dot{y}(t)$$

This form avoids differentiating the reference. It typically uses a direct measurement of \dot{y} .