
ECE 486: Control Systems

Lecture 8B: Proportional-Derivative (PD) Control



Key Takeaways

This lecture describes proportional-derivative control. The 
controller sets the plant input with two terms: (i) proportional 
to the error and (ii) proportional to the derivative of the error.

Key properties of PD control:

1. Some plants cannot be stabilized by P or PI control. This 
motivates the use of PD.

2. A basic implementation of PD control will amplify noise.

3. Common implementations use a “smoothed” derivative or 
a direct measurement of the derivative of the output.
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Rocket Attitude Control

Rockets require precise control of their heading direction 
(attitude) to reach their desired final destination.
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u:= Thrust angle (rad)

y:= Heading angle (rad)



Model of Rocket Attitude Dynamics

If 𝑢 ≪ 1 and 𝑦 ≪ 1 then the dynamics 
are approximated by:

4

Transfer Function:

Poles:

System is unstable

Step input with
zero ICs and 
u(t) = 0.05rad



Proportional Control

Model of rocket attitude:

Sub  𝑢 = 𝐾𝑝 𝑟 − 𝑦 into plant model:

The coefficient of ሶ𝑦 is = 0 and is unaffected by Kp. The closed-
loop will be unstable.

The rocket dynamics cannot be stabilized by P-control. 
Moreover it cannot be stabilized by PI-control (Routh-Hurwitz 
criterion can be applied to show this).
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Proportional-Derivative (PD) Control

Closed-loop, proportional-derivative control for rocket:

1. User specifies the desired heading angle, r(t)

2. Controller computes the tracking error e(t) = r(t)-y(t)

3. Controller sets input thrust angle to: 

where Kp and Kd are gains to be selected. 
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Effect of P and D Terms

P Control:

Kp affects settling time, steady-state error, control input

PD Control:

Use two gains to independently modify the transient and 
steady-state characteristics:

P-Term: Reacts to present (current error).

D-Term: Reacts to future (derivative of error), i.e. ሶ𝑒
indicates the direction the error is headed. Has no effect 
in steady-state.
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Model for Closed-Loop Control

Recall the second-order model for the rocket:

Substitute 𝑢 = 𝐾𝑝𝑒 + 𝐾𝑑 ሶ𝑒 and combine terms:

This is a second-order closed-loop model from (r,d) to y.

8



Closed-Loop Response

The dynamics of the closed-loop system are:

• Closed-loop is stable if and only if a0+b0Kp>0, a1+b0Kd>0.

• We can place the two closed-loop poles anywhere by 
proper choice of (Kp,Kd). [Always true if plant is 2nd order.]

• We are able to use the derivative term to modify the 
damping and stabilize the rocket attitude dynamics.
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Example of PD Control

• Simulate with gains (𝐾𝑝, 𝐾𝑑) = (0.75,0.47) and

• 𝑟 𝑡 = 0.1𝑟𝑎𝑑, 

• 𝑑 𝑡 = −0.01𝑟𝑎𝑑 for 𝑡 ≥ 5𝑠𝑒𝑐

• Closed-loop is underdamped with:
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Effect of Noise

• Simulate with gains (𝐾𝑝, 𝐾𝑑) = (0.75,0.47) and

• 𝑟 𝑡 = 0.1𝑟𝑎𝑑, 

• Sensor noise 𝑛 𝑡 for 𝑡 ≥ 5𝑠𝑒𝑐 [Zero mean, Standard Dev=0.005]
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Effect of Noise

• Simulate with gains (𝐾𝑝, 𝐾𝑑) = (0.75,0.47) and

• 𝑟 𝑡 = 0.1𝑟𝑎𝑑, 

• Sensor noise 𝑛 𝑡 for 𝑡 ≥ 5𝑠𝑒𝑐 [Zero mean, Standard Dev=0.005]

Derivative control can lead to large control inputs due to fast 
changes in the reference command or sensor noise.
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Implementations for PD Control

1. Use 𝐾𝑑𝑣 where 𝑣 is an approximate (smoothed) derivative:

2. Rate-feedback implementation:

This form avoids differentiating the reference. It typically 

uses a direct measurement of ሶ𝑦.
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