ECE 486: Control Systems

Lecture 8A: Proportional-Integral (PI) Control

Key Takeaways

This lecture describes proportional-integral control. The controller sets the plant input with two terms: (i) proportional to the error and (ii) proportional to the integral of the error.

Key properties of PI control:

- Integral control is that it achieves zero error in steady state (assuming system is stable and reaches a steady-state).
- 2. Initial transient is dominated by the proportional term while the steady state is dominated by the integral term.

The two terms in a PI controller can be used to provide better trade-offs in the control design.

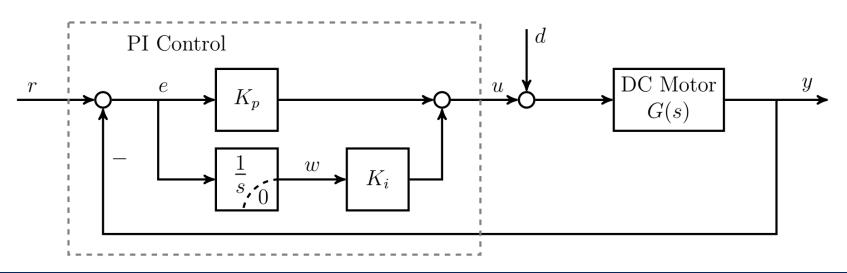
Proportional-Integral (PI) Control

Closed-loop, proportional-integral control for DC motor:

- 1. User specifies the desired motor speed, r(t)
- 2. Controller computes the tracking error e(t) = r(t)-y(t)
- **3.** Controller sets input voltage to:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau$$

where K_p and K_i are gains to be selected.



Effect of P and I Terms

P Control: $u(t) = K_p e(t)$

 K_{p} affects settling time, steady-state error, control input

PI Control:
$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

Use two gains to independently modify the transient and steady-state characteristics:

P-Term: Reacts to present (current error) and dominates during initial transient.

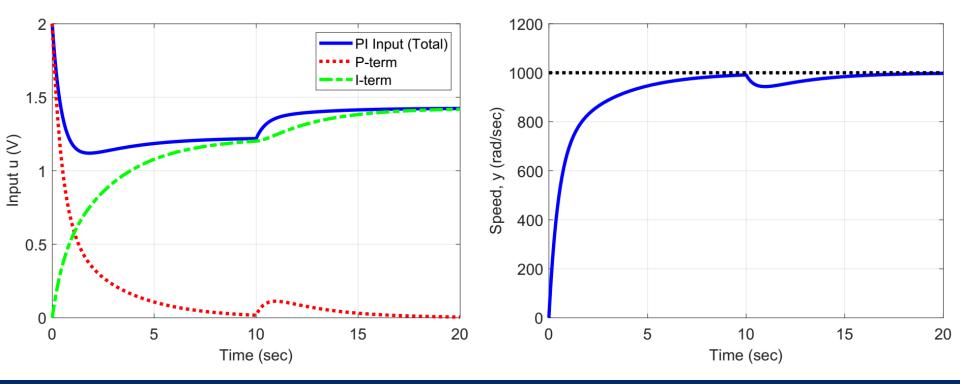
I-Term: Reacts to past (integral of error) and dominates during steady-state.

Effect of P and I Terms

PI Control: $u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$

Simulation with $K_p = 0.002$, $K_i = 0.001$, and

- $r(t) = 1000 \frac{rad}{sec}$
- d(t) = -0.2V for $t \ge 10$ sec



Model for Closed-Loop Control

Recall the first-order model for the motor:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$$

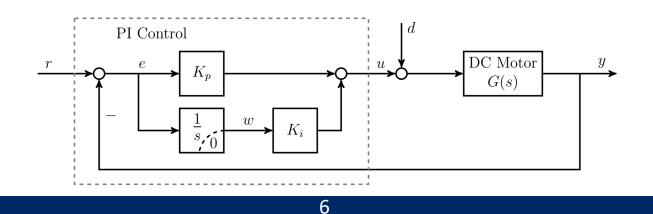
$$\Rightarrow \ddot{y}(t) + a_0 \dot{y}(t) = b_0 \dot{u}(t) + b_0 \dot{d}(t)$$

PI Control

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau \quad \Rightarrow \quad \dot{u}(t) = K_p \dot{e}(t) + K_i e(t)$$

Substitute \dot{u} in motor model and combine y terms:

 $\ddot{y}(t) + (a_0 + b_0 K_p) \, \dot{y}(t) + (b_0 K_i) \, y(t) = (b_0 K_p) \, \dot{r}(t) + (b_0 K_i) \, r(t) + b_0 \dot{d}(t)$



Closed-Loop Response

The dynamics of the closed-loop system are:

 $\ddot{y}(t) + (a_0 + b_0 K_p) \, \dot{y}(t) + (b_0 K_i) \, y(t) = (b_0 K_p) \, \dot{r}(t) + (b_0 K_i) \, r(t) + b_0 \dot{d}(t)$

$$T_{r \to y}(s) = \frac{(b_0 K_p)s + (b_0 K_i)}{s^2 + (a_0 + b_0 K_p)s + (b_0 K_i)}$$

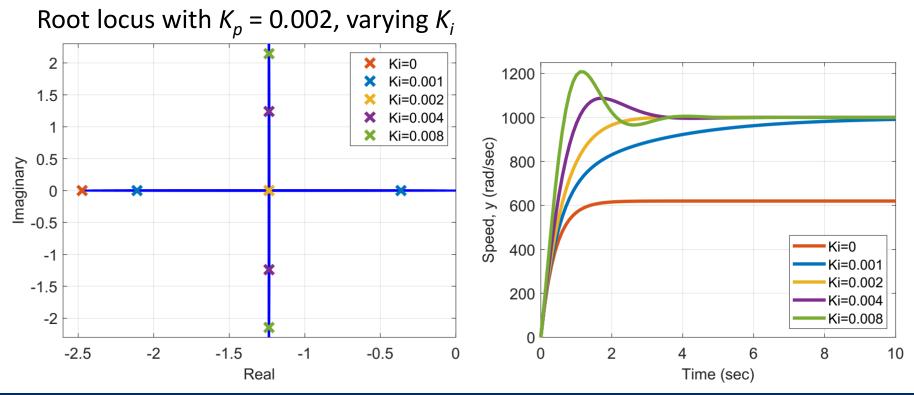
- Closed-loop is stable if and only if $a_0 + b_0 K_p > 0$, $b_0 K_i > 0$.
- We can place the two closed-loop poles anywhere by proper choice of (K_p, K_i) . [Always true if plant is 1st order.]
- If the system reaches a steady-state then:

 $(b_0 K_i) \, \bar{y} = (b_0 K_i) \, \bar{r} \quad \Rightarrow \quad \bar{y} = \bar{r}$

Key property of integral control: If the system converges to a steady state then there is no error.

Effect of Integral Gain

- Small K_i
 - Closed-loop is overdamped with two real poles.
 - Increasing K_i (with K_p fixed) causes the dominant (slow) pole to move into the LHP. This speeds up the response.



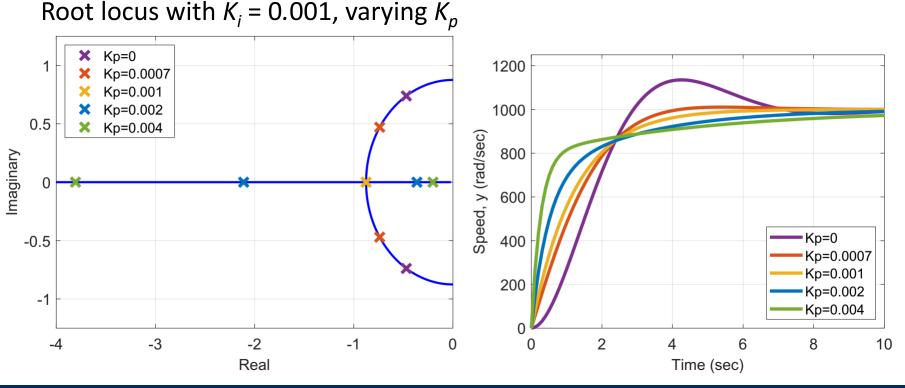
Effect of Integral Gain

- Small K_i
- Large K_i
 - Closed-loop is underdamped with two complex poles.
 - Increasing K_i (with K_p fixed) causes the poles to become more underdamped. This increases overshoot and oscillations.



Effect of Proportional Gain

- Small K_p
 - Closed-loop is underdamped with two complex poles.
 - Increasing K_p (with K_i fixed) will increase the damping ratio.
 This reduces overshoot and oscillations.



10

Effect of Proportional Gain

- Small K_p
- Large K_p
 - Closed-loop is overdamped with two real poles.
 - Increasing K_p (with K_i fixed) causes causes the dominant (slow) pole to move to the imaginary axis. This slows down the response.

