ECE 486: Control Systems

Lecture 7A: Summary Of Control Design Issues

Key Takeaways

- Models used for control design are often simplified and contain a variety of inaccuracies.
- Uncertain parameters, unmodeled dynamics, nonlinear effects, and implementation effects.
- Control design involves trade-offs to satisfy many conflicting objectives.
- Stability, reference tracking, disturbance rejection, actuator effort, noise rejection, and robustness to model uncertainty.

Problem 1

A control system is required to ensure the quadcopter below maintains a desired altitude.

- A) Discuss the simplified models that might be used for control design and various sources of inaccuracies.
- B) Discuss the various competing objectives that might arise in the design of this system.

DJI Phantom 4Pro (Photo: A. Savin, Re-use under Free Art License)

Solution 1A

A) Discuss the simplified models that might be used for control design and various sources of inaccuracies.

DJI Phantom 4Pro (Photo: A. Savin, Re-use under Free Art License)

Problem 1B

B) Discuss the various competing objectives that might arise in the design of this system.

DJI Phantom 4Pro (Photo: A. Savin, Re-use under Free Art License)

Solution 1-Extra Space

ECE 486: Control Systems

Lecture 7B: Open-Loop Control

Key Takeaways

This lecture describes open-loop control.

Open-loop control does not require a sensor and hence it can lead to a cheaper system. It can be effective if:

- 1. The plant is stable,
- 2. The disturbances are small, and
- 3. The model is accurate.

If any of these conditions fails, then open-loop control will either fail to achieve stability (if the plant is unstable) or will not provide accurate tracking.

Problem 2

Consider the following plant:

$$\ddot{y}(t) + 2\dot{y}(t) + 10\,y(t) = 20\,u(t) + 10\,d(t)$$

This system is underdamped with $\omega_n = 3.16 \frac{rad}{sec}$, $\zeta = 0.316$, and poles $s_{1,2} = -1 \pm 3j$.

A) What is the model from inputs (r,d) to output y if we use an open-loop controller $u(t) = K_{ol} r(t)$?

B) Can the gain K_{ol} be selected so that the control system is overdamped from r to y?

C) Select K_{ol} so that $y(t) \rightarrow \overline{r}$ when $r(t) = \overline{r}$ and d(t) = 0.

D) Sketch the response y with your gain Kol when r(t) = 2 and d(t) = 1. What is the impact of the disturbance?

Solution 2A

$$\ddot{y}(t) + 2\dot{y}(t) + 10\,y(t) = 20\,u(t) + 10\,d(t)$$

A) What is the model from inputs (r,d) to output y if we use an open-loop controller $u(t) = K_{ol} r(t)$?

Solution 2B

$$\ddot{y}(t) + 2\dot{y}(t) + 10\,y(t) = 20\,u(t) + 10\,d(t)$$

B) Can the gain K_{ol} be selected so that the control system is overdamped from r to y?

Solution 2C

$$\ddot{y}(t) + 2\dot{y}(t) + 10\,y(t) = 20\,u(t) + 10\,d(t)$$

C) Select K_{ol} so that $y(t) \rightarrow \bar{r}$ when $r(t) = \bar{r}$ and d(t) = 0.

Solution 2D

$$\ddot{y}(t) + 2\dot{y}(t) + 10\,y(t) = 20\,u(t) + 10\,d(t)$$

D) Sketch the response y with your gain Kol when r(t) = 2 and d(t) = 1. What is the impact of the disturbance?

Solution 2-Extra Space

ECE 486: Control Systems

Lecture 7C: Proportional (P) Control

Key Takeaways

This lecture describes closed-loop proportional control. The controller sets the plant input proportional to the error. Closed-loop control can achieve higher performance but requires a sensor.

Larger proportional gains:

- (i) improve reference tracking and disturbance rejection
- (ii) increase the closed-loop speed of response

but:

- (i) require larger control inputs
- (ii) can excite unmodeled dynamics

Problem 3

Consider the following plant:

$$2\dot{y}(t) + 3y(t) = -4u(t) + d(t)$$

A) What is the model from inputs (r,d) to output y if we use an proportional controller $u(t) = K_p (r(t) - y(t))$?

B) Select K_p so that the steady-state error $\bar{e} = \bar{r} - \bar{y}$ is less than 0.1 when $r(t) = \bar{r} = 2$ and d(t) = 1.

C) Sketch the response y with your gain K_p when r(t) = 2 and d(t) = 1. What is the time constant of the closed-loop?

Solution 3A

$$2\dot{y}(t) + 3\,y(t) = -4\,u(t) + \,d(t)$$

A) What is the model from inputs (r,d) to output y if we use an proportional controller $u(t) = K_p (r(t) - y(t))$?

Solution 3B

$$2\dot{y}(t) + 3y(t) = -4u(t) + d(t)$$

B) Select K_p so that the steady-state error $\bar{e} = \bar{r} - \bar{y}$ is less than 0.1 when $r(t) = \bar{r} = 2$ and d(t) = 1.

Solution 3C

$$2\dot{y}(t) + 3\,y(t) = -4\,u(t) + \,d(t)$$

C) Sketch the response y with your gain K_p when r(t) = 2 and d(t) = 1. What is the time constant of the closed-loop?

Solution 3-Extra Space