#### **ECE 486: Control Systems**

Lecture 7A: Summary Of Control Design Issues

### **Key Takeaways**

- Models used for control design are often simplified and contain a variety of inaccuracies.
- Uncertain parameters, unmodeled dynamics, nonlinear effects, and implementation effects.
- Control design involves trade-offs to satisfy many conflicting objectives.
- Stability, reference tracking, disturbance rejection, actuator effort, noise rejection, and robustness to model uncertainty.

### **DC Motor**

DC motors are found in many applications, e.g. multicopters.





u:= Voltage (V)

y:= rotational
speed (rad/sec)

# **Modeling the Motor Dynamics**

- Our control designs will be based on low-order models.
- Modeling is an important step but is domain specific.
- The motor involves coupled electrical and mechanical (rotational inertia) dynamics.



### **Modeling the Motor Dynamics**

Neglecting the "fast" electrical dynamics:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t) + b_0 d(t)$$
  
where:  $a_0 = 0.94 \frac{1}{sec}$  and  $b_0 = 766.8 \frac{rad}{sec^2 V}$ 

where d (V) models the effect of environmental disturbances.



#### **Nominal Step Responses**



#### **Model Simplifications and Uncertainties**

• Uncertainty in parameters  $(a_0, b_0)$ 



## **Model Simplifications and Uncertainties**

- Uncertainty in parameters  $(a_o, b_o)$
- Unmodeled (neglected) dynamics: electrical dynamics.
- Nonlinear effects: motor voltage "saturates" in [0,3V]
- Implementation effects: sampling, discrete-time updates, etc.



# **Control Design Objectives**

The goal is to have the motor speed y(t) follow a desired reference speed r(t). The tracking error is e(t) := r(t)-y(t).

Trade-offs are involved due to many competing objectives:

- Stability
- Reference tracking: rise and settling times, overshoot, steady-state error.
- Disturbance rejection
- Actuator effort
- Noise rejection
- Robustness to model uncertainty