ECE 486: Control Systems

Lecture 6B: Stability

Key Takeaways

We study the properties exponential terms *e*st that appear in the free and forced response.

The lecture covers the following:

- 1. Response characteristics for real and complex roots
- 2. Time Constants
- 3. Internal Stability
- 4. Bounded-Input, Bounded-Output Stability

Exponential Response: Real Root

Key properties of e^{st} with a real root s.

- s≥0: Response stays constant or grows unbounded.
- s<0: Response decays to zero.
- Faster decay for more negative values of s.

Exponential Response: Complex Roots

Rewrite e^{st} with a complex roots $s = \alpha \pm j\beta$ as: $e^{\alpha t} \cos(\beta t)$ and $e^{\alpha t} \sin(\beta t)$

Key Properties

- Response oscillates
- α ≥0: Amplitude stays constant or grows unbounded.
- α<0: Amplitude decays to zero.
- Faster decay for more negative values of *α*.

Summary of Key Properties

Terminology

- The left half of the complex plane (LHP) corresponds to values of *s* with *Re(s) < 0*.
- The closed right half of the complex plane (CRHP) corresponds to values of s with Re(s) ≥ 0.
- The time constant of a pole $s \in C$ is $\tau = \frac{1}{|Re(s)|}$ sec.

Important Facts:

- **1.** The exponential term decays to zero if and only if s is in the LHP.
- If s is in the LHP then the exponential term decays to 0.05 (=5% of initial value) in 3τ seconds.

(Reason: $e^{st}|_{t=3\tau} = e^{-3} \approx 0.05$)

Internal Stability

- An LTI system is internally stable if the free response returns to zero (y(t) → 0 as t → ∞) for any initial condition. It is internally unstable if it is not stable.
- Fact: A linear system is internally stable if and only if all poles are in the LHP, i.e. Re(s_i) < 0 for all i.
- **Reason:** Free response solution has the form:

$$y(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t} + \dots + c_n e^{s_n t}$$

Input-Output Stability

- An LTI system is bounded-input, bounded-output (BIBO) stable if the forced response output with zero ICs remains bounded for every bounded input. The system is BIBO unstable if it is not BIBO stable.
- Fact: A minimal, linear system is BIBO stable if and only if all poles are in the LHP.
- **Reason:** More technical and will come later.
 - The fact assumes system is minimal as pole/zero cancellations can "hide" unstable dynamics.

Example: $\dot{y}(t) - y(t) = \dot{u}(t) - u(t)$ and $G(s) = \frac{s-1}{s-1}$

For minimal LTI systems the two types of stability are equivalent. We will often not distinguish between them.

Routh-Hurwitz Condition

A minimal, LTI system is stable if and only all poles are in the LHP. We can numerically compute all poles:

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

The Routh-Hurwitz provides necessary and sufficient conditions on $\{a_0, a_1, ..., a_n\}$ for all roots to lie in the LHP.

Special Cases:

System Order	Characteristic Eqn	Routh-Hurwitz Conditions
First	s+a ₀ =0	a ₀ >0
Second	s ² +a ₁ s+a ₀ =0	a ₀ >0 and a ₁ >0
Third	$s^{3}+a_{2}s^{2}+a_{1}s+a_{0}=0$	a ₂ >0, a ₀ >0, and a ₁ a ₂ > a ₀