ECE 486: Control Systems

Lecture 6A: Effect of Extra Poles & Zeros

Key Takeaways

This lecture considers the effect of extra poles and zeros on the step response.

- LHP Poles: Increase settling time.
- The effects are small if the pole is far in the LHP.
- **LHP Zeros:** Increase overshoot, decrease rise time, and have no effect on settling time.
- The effects are small if the zero is far in the LHP.

RHP Zeros: Cause undershoot but no effect on settling time. The effects are small if the zero is far in the RHP.

First-Order Step Response

Step Response: $\dot{y}(t) + 1.5y(t) = 1.5u(t)$ with y(0) = 0 and u(t) = 1 for $t \ge 0$ $G(s) = \frac{1.5}{s+1.5}$

- **1.** Stable: $s + 1.5 = 0 \implies s_1 = -1.5 < 0$
- **2.** Time constant: $\tau = \frac{1}{|s_1|} = \frac{1}{1.5} = \frac{2}{3}sec$
- **3.** Settling time: $3\tau = 2sec$

4. Final Value:
$$\bar{y} = G(0)\bar{u} = 1$$

First-Order Step Response

Step Response:

 $\dot{y}(t) + 1.5y(t) = 1.5u(t)$ with y(0) = 0 and u(t) = 1 for all $t \ge 0$ $G(s) = \frac{1.5}{s+1.5}$

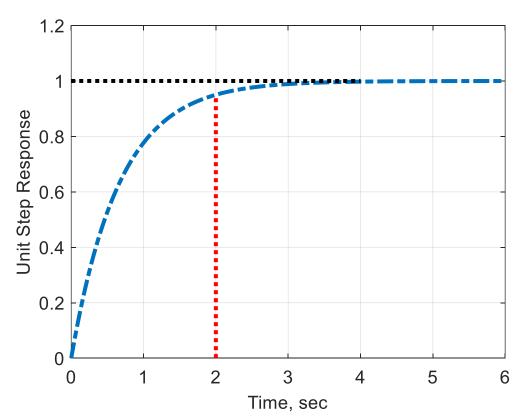
Response:

- (i) stable,
- (ii) $3\tau = 2sec$,
- (iii) \overline{y} = 1

Matlab:

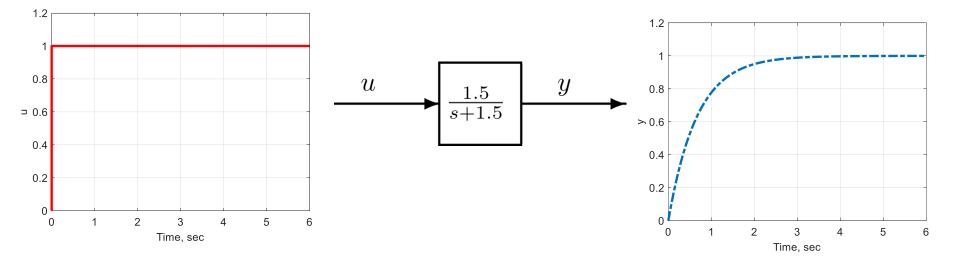
- >> G=tf(1.5,[1 1.5]);
- >> [yunit,t]=step(G);

>> plot(t,yunit);

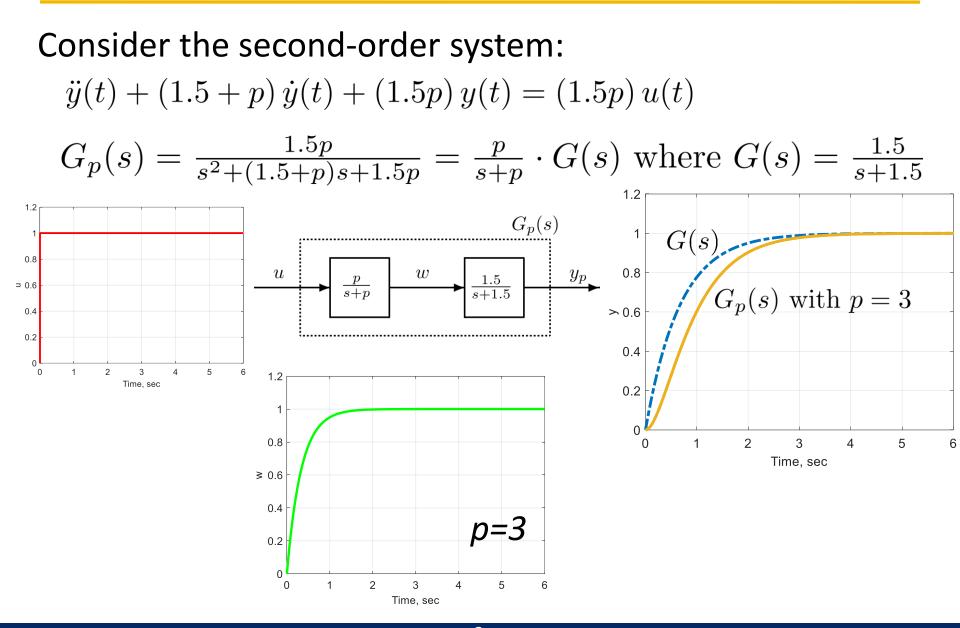


Additional Pole

Consider the second-order system: $\ddot{y}(t) + (1.5 + p) \, \dot{y}(t) + (1.5p) \, y(t) = (1.5p) \, u(t)$ $G_p(s) = \frac{1.5p}{s^2 + (1.5 + p)s + 1.5p} = \frac{p}{s+p} \cdot G(s)$ where $G(s) = \frac{1.5}{s+1.5}$



Additional Pole

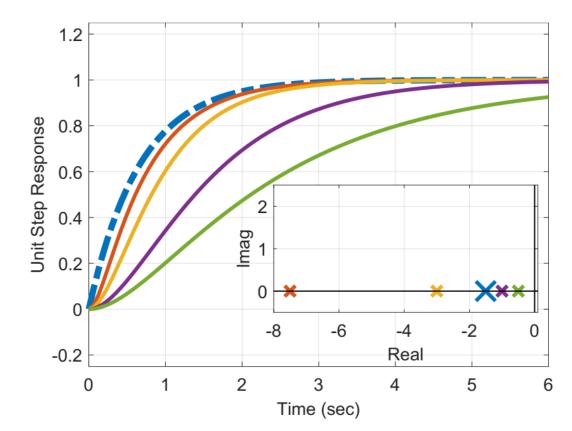


Additional Pole

Consider the second-order system: $\ddot{y}(t) + (1.5 + p) \, \dot{y}(t) + (1.5p) \, y(t) = (1.5p) \, u(t)$ $G_p(s) = \frac{1.5p}{s^2 + (1.5 + p)s + 1.5p} = \frac{p}{s+p} \cdot G(s)$ where $G(s) = \frac{1.5}{s+1.5}$

Additional poles in the LHP increase the settling time.

The effect is small if the extra pole is far in the LHP ($\approx 5 \times$ faster than slowest pole)



Second-Order Step Response

Step Response: $\ddot{y}(t) + 2\dot{y}(t) + 4y(t) = 4u(t)$ with $y(0) = 0, \dot{y}(0) = 0$ and u(t) = 1 for $t \ge 0$ $G(s) = \frac{4}{s^2 + 2s + 4}$

1. Underdamped and Stable:

$$\omega_n = 2 \frac{rad}{sec}$$
 and $\zeta = 0.5 \quad \Rightarrow \quad s_{1,2} = -1 \pm 1.73j$

2. Settling time: $T_s = 3\tau = \frac{3}{|Re(s_{1,2})|} = 3sec$

3. Final Value: $\bar{y} = G(0)\bar{u} = 1$

Peak Overshoot:

4.

$$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \approx 0.16$$

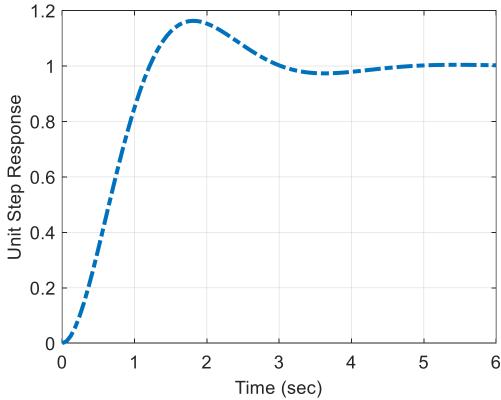
$$\Rightarrow y(T_p) = (1+M_p)\bar{y} \approx 1.16$$

Second-Order Step Response

Step Response:

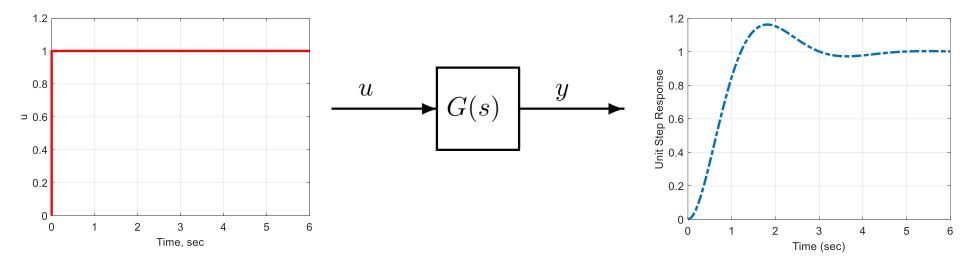
 $\ddot{y}(t) + 2\dot{y}(t) + 4y(t) = 4u(t)$ $G(s) = \frac{4}{s^2 + 2s + 4}$ with $y(0) = 0, \dot{y}(0) = 0$ and u(t) = 1 for $t \ge 0$ Response: 1.2 (i) stable, underdamped 1 (ii) $3\tau = 3 \sec$, (iii) $\overline{y} = 1$ (iv) $y(T_p) \approx 1.16$ Matlab:

>> plot(t,yunit);



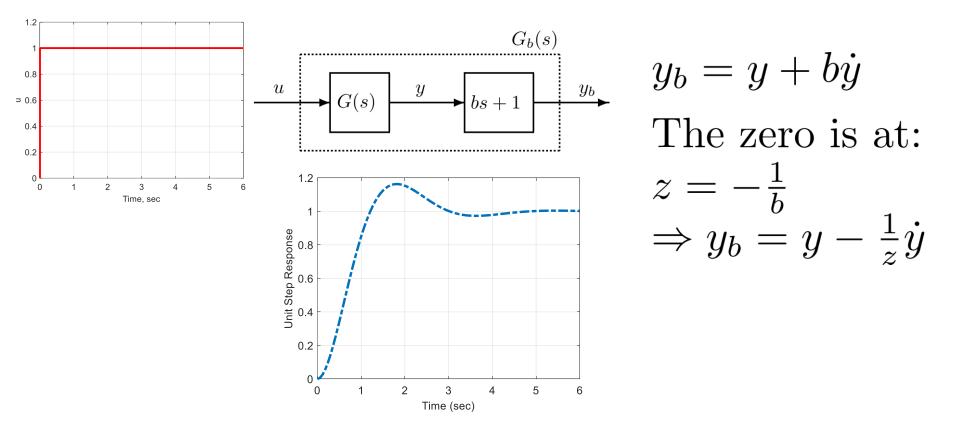
Effect of a Zero

Consider the second-order system: $\ddot{y}(t) + 2 \, \dot{y}(t) + 4 \, y(t) = (4b) \, \dot{u}(t) + 4 u(t)$ $G_b(s) = \frac{4b \, s + 4}{s^2 + 2s + 4} = (bs + 1) \cdot G(s)$ where $G(s) = \frac{4}{s^2 + 2s + 4}$



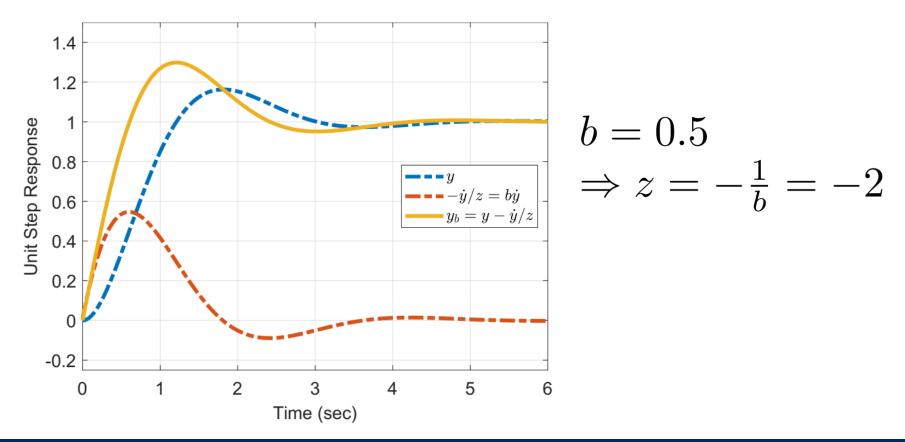
Effect of a Zero

Consider the second-order system: $\ddot{y}(t) + 2 \, \dot{y}(t) + 4 \, y(t) = (4b) \, \dot{u}(t) + 4 u(t)$ $G_b(s) = \frac{4b \, s + 4}{s^2 + 2s + 4} = (bs + 1) \cdot G(s)$ where $G(s) = \frac{4}{s^2 + 2s + 4}$



Effect of a Zero

Consider the second-order system: $\ddot{y}(t) + 2 \dot{y}(t) + 4 y(t) = (4b) \dot{u}(t) + 4u(t)$ $G_b(s) = \frac{4b s + 4}{s^2 + 2s + 4} = (bs + 1) \cdot G(s)$ where $G(s) = \frac{4}{s^2 + 2s + 4}$

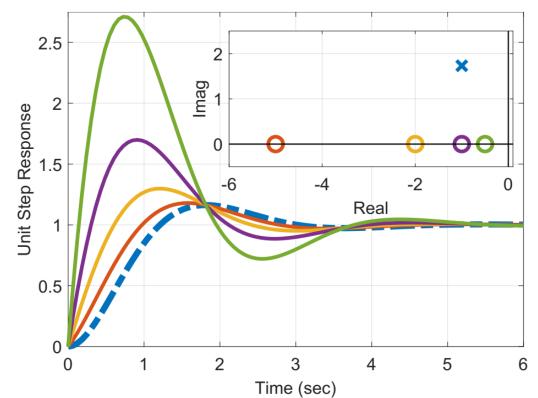


Effect of a LHP Zero

Consider the second-order system: $\ddot{y}(t) + 2\,\dot{y}(t) + 4\,y(t) = (4b)\,\dot{u}(t) + 4u(t)$ $G_b(s) = \frac{4b\,s+4}{s^2+2s+4} = (bs+1)\cdot G(s)$ where $G(s) = \frac{4}{s^2+2s+4}$

A zero in the LHP:

- Increases overshoot
- Decreases rise time
- No effect on settling time The effects are small if the zero is far in the LHP.



Effect of a RHP Zero

Consider the second-order system: $\ddot{y}(t) + 2 \, \dot{y}(t) + 4 \, y(t) = (4b) \, \dot{u}(t) + 4u(t)$ $G_b(s) = \frac{4b \, s + 4}{s^2 + 2s + 4} = (bs + 1) \cdot G(s)$ where $G(s) = \frac{4}{s^2 + 2s + 4}$

A zero in the RHP:

- Causes undershoot
- No effect on settling time

The effects are small if the zero is far in the RHP.

