ECE 486: Control Systems

Lecture 5A: Interconnection of Systems

Problem 1

- A) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?
- B) Suppose $G_1(s) = \frac{5}{s+7}$ and $G_2(s) = \frac{3}{s+2}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?

$$\underbrace{u(t)}_{G_1(s)} \underbrace{w(t)}_{G_2(s)} \underbrace{y(t)}_{H(s)}$$

C) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for parallel connection $H(s)=G_1(s) + G_2(s)$?

Problem 1

D) Consider the feedback system below with: $\dot{y}(t) + 5y(t) = 5u(t)$ and $u(t) = 2e(t) + 4 \int_0^t e(\tau) d\tau$

Obtain a model of the closed-loop from *r* to *y* with transfer functions, and compare your answers in Matlab using the function feedback.

Solution 1A

A) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?

$$M = G_{L}G_{1} = \left(\frac{3}{5t_{2}}\right)\left(\frac{5}{5t_{2}}\right) = \frac{15}{(5t_{2})(5t_{2})}$$

$$= \frac{15}{s^{2}\tau 9s\tau 14}$$

 $\ddot{y} + 9\ddot{y} \tau 14 = 150$

Solution 1B

B) Suppose $G_1(s) = \frac{5}{s+7}$ and $G_2(s) = \frac{3}{s+2}$. What is the ODE for serial connection $H(s)=G_2(s)$ $G_1(s)$?

[lingut and /output]

Solution 1C

C) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for parallel connection $H(s)=G_1(s) + G_2(s)$?

$$\begin{array}{rcl} H = & G_{17} G_{2} = & \frac{3}{512} + & \frac{5}{517} \\ = & 3(517) + 5(512) \\ & (512)(517) = & \frac{85 + 254}{5^{2} + 95 + 14} \\ & 3' + 7' g + 14' y = & 3' u + 24' u \end{array}$$

Solution 1D

ECE 486: Control Systems

Lecture 5B: Block Diagrams

Problem 2

A) Draw a block diagram for $G_1(s) = \frac{7}{s^2+2s-3}$ using integrator, summation, and gain blocks.

B) Draw a block diagram for $G_1(s) = \frac{5s+6}{s^2+2s-3}$ using integrator, summation, and gain blocks.

Solution 2A

A) Draw a block diagram for $G_1(s) = \frac{7}{s^2+2s-3}$ using integrator, summation, and gain blocks.

Solution 2B

B) Draw a block diagram for $G_1(s) = \frac{5s+6}{s^2+2s-3}$ using integrator, summation, and gain blocks.

ECE 486: Control Systems

Lecture 5C: State-Space Models

Solution 3

