ECE 486: Control Systems

Lecture 5A: Interconnections

Key Takeaways

Transfer functions can be used to derive models for interconnections of LTI systems.

This lecture covers two specific examples:

- The parallel connection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = G_1(s) + G_2(s)$.
- The serial connection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = G_1(s) G_2(s)$.
- The negative feedback interconnection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = \frac{G_1(s)}{1+G_1(s)G_2(s)}$.

- A) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?
- **B)** Suppose $G_1(s) = \frac{5}{s+7}$ and $G_2(s) = \frac{3}{s+2}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?

C) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for parallel connection $H(s)=G_1(s) + G_2(s)$?

D) Consider the feedback system below with: $\dot{y}(t) + 5y(t) = 5u(t)$ and $u(t) = 2e(t) + 4 \int_0^t e(\tau) d\tau$

Obtain a model of the closed-loop from *r* to *y* with transfer functions, and compare your answers in Matlab using the function feedback.

Solution 1A

A) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for serial connection $H(s)=G_2(s) G_1(s)$?

Solution 1B

B) Suppose $G_1(s) = \frac{5}{s+7}$ and $G_2(s) = \frac{3}{s+2}$. What is the ODE for serial connection $H(s)=G_2(s)$ $G_1(s)$?

Solution 1C

C) Suppose $G_1(s) = \frac{3}{s+2}$ and $G_2(s) = \frac{5}{s+7}$. What is the ODE for parallel connection $H(s)=G_1(s) + G_2(s)$?

Solution 1D

Consider the feedback system below with:

$$\dot{y}(t) + 5y(t) = 5u(t)$$
 and $u(t) = 2e(t) + 4 \int_0^t e(\tau) d\tau$

D) Obtain a model of the closed-loop from r to y and compare with your answers in Matlab using the function feedback.

Solution 1 – Extra Space

ECE 486: Control Systems

Lecture 5B: Block Diagrams for Linear ODEs

Key Takeaways

- This lecture describes a method to construct block diagrams for linear ODEs with constant coefficients.
- The diagrams are constructed from blocks for:
 - integration,
 - addition/subtraction, and
 - multiplication by a gain
- These diagrams will be used later for:
 - Numerical integration of ODEs using a tool call Simulink
 - Developing state-space models. These provide an alternative to the ODE/TF models that we are using as a starting point.

A) Draw a block diagram for $G_1(s) = \frac{7}{s^2+2s-3}$ using integrator, summation, and gain blocks.

B) Draw a block diagram for $G_1(s) = \frac{5s+6}{s^2+2s-3}$ using integrator, summation, and gain blocks.

Solution 2A

A) Draw a block diagram for $G_1(s) = \frac{7}{s^2+2s-3}$ using integrator, summation, and gain blocks.

Solution 2B

B) Draw a block diagram for $G_1(s) = \frac{5s+6}{s^2+2s-3}$ using integrator, summation, and gain blocks.

Solution 2 – Extra Space

ECE 486: Control Systems

Lecture 5C: State-Space Models

Key Takeaways

This lecture introduces linear state-space models.

An nth-order linear state-space model expresses the dynamics as a first-order, vector differential equation. It is possible to express as an equivalent nth-order linear ODE.

State-space models have several uses:

- There are different tools for analysis and design of feedback systems based on state-space models.
- They can be used to approximate a nonlinear model by a related linear model.

Find a state-space representation for: $y^{[3]}(t) + 2\ddot{y}(t) - 4\dot{y}(t) + 10y(t) = -3\dot{u}(t) + 6u(t)$

Solution 3

Find a state-space representation for: $y^{[3]}(t) + 2\ddot{y}(t) - 4\dot{y}(t) + 10y(t) = -3\dot{u}(t) + 6u(t)$

Solution 3-Extra Space