EECS 486: Control Systems

Lecture 5A: Interconnection of Systems

Key Takeaways

Transfer functions can be used to derive models for interconnections of LTI systems.

This lecture covers two specific examples:

- The parallel connection of $G_{1}(s)$ and $G_{2}(s)$ is given by $H(s)=G_{1}(s)+G_{2}(s)$.
- The serial connection of $G_{1}(s)$ and $G_{2}(s)$ is given by $H(s)=G_{1}(s) G_{2}(s)$.
- The negative feedback interconnection of $G_{1}(s)$ and $G_{2}(s)$ is given by $H(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)}$.

Parallel Interconnection

Serial Interconnection

Negative Feedback Interconnection

Consider the negative feedback connection with $G_{1}(s)$ in the forward path and $G_{2}(s)$ in the feedback path.
The relations are:

$$
\begin{aligned}
Y(s) & =G_{1}(s)(R(s)-W(s)) \\
W(s) & =G_{2}(s) Y(s)
\end{aligned}
$$

Eliminating $W(s)$ and solving for $Y(s)$ yields:

$$
\begin{aligned}
& Y(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)} R(s) \\
& \Rightarrow H(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)}
\end{aligned}
$$

For positive feedback:

$$
H(s)=\frac{G_{1}(s)}{1-G_{1}(s) G_{2}(s)}
$$

Unity Feedback Interconnection

The system from r to y has:

- Forward Path: $G_{1}(s)=G(s) K(s)$
- Feedback Path: $G_{2}(s)=1$

The transfer function from r to y is:

$$
T_{r \rightarrow y}(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)}=\frac{G(s) K(s)}{1+G(s) K(s)}
$$

Example

The system from r to e has:

- Forward Path: $G_{1}(s)=1$
- Feedback Path: $G_{2}(s)=G(s) K(s)$

The transfer function from r to e is:

$$
T_{r \rightarrow e}(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)}=\frac{1}{1+G(s) K(s)}
$$

Non-minimal Realizations

Some care is required when interpreting: $H(s)=\frac{G_{1}(s)}{1+G_{1}(s) G_{2}(s)}$ Consider the negative feedback interconnection of:

$$
\begin{array}{ll}
G_{1}(s)=\frac{3}{s_{4}^{4}} & \dot{y}(t)+4 y(t)=3(r(t)-w(t)) \\
G_{2}(s)=\frac{5}{9_{s}-6} & 9 \dot{w}-6 w(t)=5 y(t)
\end{array}
$$

A direct use of the negative-feedback formula gives:

$$
\begin{aligned}
H(s) & =\frac{\frac{3}{s+4}}{1+\frac{5}{s+4} \cdot \frac{5}{9 s-6}} \\
& =\frac{3}{(s+4)(9 s-6)+3 \cdot 5} \cdot \frac{\frac{1}{s+4}}{(s+4)(9 s-6)} \\
& =\frac{3(9 s-6)}{(s+4)(9 s-6)+3 \cdot 5} \cdot \frac{s+4}{s+4}
\end{aligned}
$$

This has a (fictitious) pole/zero cancellation at $s=-4$.

Non-minimal Realizations

Consider the negative feedback interconnection of:

$$
\begin{array}{ll}
G_{1}(s)=\frac{3}{s+4} & \dot{y}(t)+4 y(t)=3(r(t)-w(t)) \\
G_{2}(s)=\frac{5}{9 s-6} & 9 \dot{w}-6 w(t)=5 y(t)
\end{array}
$$

Matlab code:
$\gg G 1=t f\left(3,\left[\begin{array}{ll}1 & 4\end{array}\right) ; G 2=t f(5,[9-6])\right.$;
$\gg H=G 1 /(1+G 1 * G 2)$
H =

$$
27 s^{\wedge} 2+90 s-72
$$

$9 s^{\wedge} 3+66 s^{\wedge} 2+111 s-36$
>> pole(H.'
-4.0000 -3.6103 0.2770
>> zero(H.'

Minimal Realization with feedback

Consider the negative feedback interconnection of:

$$
\begin{array}{ll}
G_{1}(s)=\frac{3}{s+4} & \dot{y}(t)+4 y(t)=3(r(t)-w(t)) \\
G_{2}(s)=\frac{5}{9 s-6} & 9 \dot{w}-6 w(t)=5 y(t)
\end{array}
$$

The feedback command computes a minimal realization:
$\gg G 1=t f\left(3,\left[\begin{array}{ll}1 & 4\end{array}\right) ; G 2=t f(5,[9-6]) ;\right.$
$\gg H=$ feed.back (G1, G2)
$\mathrm{H}=$

$$
27 s-18
$$

$9 s^{\wedge} 2+30 s-9$
Negative feedback interconnections should not be computed using G1/(1+G1*G2). Instead, use the syntax H=feedback (G1, G2).

