EECS 486: Control Systems

Lecture 5A: Interconnection of Systems

Key Takeaways

Transfer functions can be used to derive models for interconnections of LTI systems.

This lecture covers two specific examples:

- The parallel connection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = G_1(s) + G_2(s)$.
- The serial connection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = G_1(s) G_2(s)$.
- The negative feedback interconnection of $G_1(s)$ and $G_2(s)$ is given by $H(s) = \frac{G_1(s)}{1+G_1(s)G_2(s)}$.

Parallel Interconnection

Serial Interconnection

>> G1 = tf(3,[1 4]);
$$G_1(s) = \frac{3}{s+4}$$
 $\dot{y}(t) + 4y(t) = 3u(t)$

>> G2 = tf(5,[9 -6]);
$$G_2(s) = \frac{5}{9s-6}$$
 $9\dot{y}(t) - 6y(t) = 5u(t)$

>> H = G2*G1
15
9
$$\ddot{y}(t) + 30\dot{y}(t) - 24y(t) = 15u(t)$$

9 $\ddot{y}(t) + 30\dot{y}(t) - 24y(t) = 15u(t)$

Negative Feedback Interconnection

Consider the negative feedback connection with $G_1(s)$ in the forward path and $G_2(s)$ in the feedback path.

The relations are:

$$Y(s) = G_1(s) \left(R(s) - W(s) \right)$$
$$W(s) = G_2(s)Y(s)$$

Eliminating W(s) and solving for Y(s) yields:

$$Y(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)} R(s)$$

$$\Rightarrow H(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

For positive feedback:

$$H(s) = \frac{G_1(s)}{1 - G_1(s)G_2(s)}$$

Unity Feedback Interconnection

The system from *r* to *y* has:

- Forward Path: $G_1(s) = G(s)K(s)$
- Feedback Path: $G_2(s) = 1$

The transfer function from *r* to *y* is:

$$T_{r \to y}(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

Example

The system from *r* to *e* has:

- Forward Path: $G_1(s) = 1$
- Feedback Path: $G_2(s) = G(s)K(s)$

The transfer function from *r* to *e* is:

$$T_{r \to e}(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)} = \frac{1}{1 + G(s)K(s)}$$

Non-minimal Realizations

Some care is required when interpreting: $H(s) = \frac{G_1(s)}{1+G_1(s)G_2(s)}$ Consider the negative feedback interconnection of:

$$G_1(s) = \frac{3}{s+4} \qquad \dot{y}(t) + 4y(t) = 3(r(t) - w(t))$$

$$G_2(s) = \frac{5}{9s-6} \qquad 9\dot{w} - 6w(t) = 5y(t)$$

A direct use of the negative-feedback formula gives:

$$H(s) = \frac{\frac{3}{s+4}}{1+\frac{3}{s+4}\cdot\frac{5}{9s-6}}$$

= $\frac{3}{(s+4)(9s-6)+3\cdot5} \cdot \frac{\frac{1}{s+4}}{\frac{1}{(s+4)(9s-6)}}$
= $\frac{3(9s-6)}{(s+4)(9s-6)+3\cdot5} \cdot \frac{s+4}{s+4}$
This has a (fictitious) pole/zero $G_2(s)$ $H(s)$
cancellation at $s=-4$.

Non-minimal Realizations

Consider the negative feedback interconnection of:

$G_1(s) = \frac{3}{s+4}$	$\dot{y}(t) + 4y(t) = 3(r(t) - w(t))$
$G_2(s) = \frac{5}{9s-6}$	$9\dot{w} - 6w(t) = 5y(t)$

Matlab code:

>> G1 = t:	E(3,[1 4]);	G2 = tf(5, [9])	-6]);
>> H = G1,	/(1+G1*G2)		
H =			
27 s′	^2 + 90 s -	72	
		r	
$9 s^3 + 60$	5 s^2 + 111	s - 36	\uparrow
>> pole(H	.'		
-4.0000	-3.6103	0.2770	w
>> zero(H	• '		i L
-4.0000	0.6667		

$\label{eq:main_static} \textbf{Minimal Realization with} \; \texttt{feedback}$

Consider the negative feedback interconnection of:

$$G_1(s) = \frac{3}{s+4} \qquad \dot{y}(t) + 4y(t) = 3(r(t) - w(t))$$

$$G_2(s) = \frac{5}{9s-6} \qquad 9\dot{w} - 6w(t) = 5y(t)$$

The feedback command computes a minimal realization: >> G1 = tf(3, [1 4]); G2 = tf(5, [9 -6]); >> H = feedback(G1,G2) H = 27 s - 18 $y \text{ s}^2 + 30 \text{ s} - 9$

Negative feedback interconnections should not be computed using G1/(1+G1*G2). Instead, use the syntax H=feedback(G1,G2). H(s)