ECE 486: Control Systems

Lecture 4B: Time Domain Performance

Problem 1

Several unit step responses are shown below. For each:

- Is the system stable?
- If the response is stable: What is the final value, settling time, overshoot, rise time? Does the response have undershoot?

2

Solution 1A

- Is the system stable?
- If the response is stable: What is the final value, settling time, overshoot, rise time? Does the response have undershoot?

Solution 1B

- Is the system stable?
- If the response is stable: What is the final value, settling time, overshoot, rise time? Does the response have undershoot?

Solution 1C

Is the system stable?

yes

Solution 1D

- Is the system stable?
- If the response is stable: What is the final value, settling time, overshoot, rise time? Does the response have undershoot?

yes

ECE 486: Control Systems

Lecture 4B: First-Order Step Response

Problem 2

A) Roughly sketch the response for the following:

$$\dot{y}(t) + 2y(t) = 4u(t)$$

with $y(0) = 0$ and $u(t) = 3$ for all $t \ge 0$

B) Roughly sketch the response for the following

$$\dot{y}(t) - 3y(t) = 2u(t)$$

with $y(0) = 0$ and $u(t) = 1$ for all $t \ge 0$

Solution 2A

Solution 2B

ECE 486: Control Systems

Lecture 4C: Second-Order Step Response

Problem 3

Each of the second-order systems below is stable* For each system:

- What is the natural frequency and damping ratio?
- Is the system under, over, or critically damped?
- Roughly sketch the unit step response noting the final time, settling time, and overshoot (if underdamped).

$$G_A(s) = \frac{20}{s^2 + 2s + 10}$$
 $G_B(s) = \frac{20}{s^2 + 11s + 10}$

*Recall that $s^2 + a_1s + a_0 = 0$ has all poles in the LHP if and only if $a_1 > 0$ and $a_0 > 0$.

Solution 3A

- What is the natural frequency and damping ratio?
- Is the system under, over, or critically damped?

 Roughly sketch the unit step response noting the final time, settling time, and overshoot (if underdamped).

Solution 3B

- What is the natural frequency and damping ratio?
- Is the system under, over, or critically damped?
- Roughly sketch the <u>unit step</u> response noting the final time, settling time, and overshoot (if underdamped).

$$\omega_n^2 = 10 \rightarrow \omega_n = 1/6 + 1 + 1/6 + 1/6/6cc$$

 $2 R \omega_n = 11 \rightarrow f = \frac{11}{2} = \frac{11}{2} = \frac{11}{2} = 1.74 > 1$ Over day

 $G_B(s) = \frac{2}{s^2 + 11}$

Solution 3-Extra Space

