ECE 486: Control Systems

Lecture 4C: Second-Order Step Response

Key Takeaways

This lecture covers the step response for second-order systems.

The step response of a *stable*, second-order system.

- Is characterized by the natural frequency and damping ratio of the system
- 2. Has overshoot and oscillations if the system is underdamped.

Second-Order Step Response

Consider the second-order system:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t)$$

with $y(0) = 0, \ \dot{y}(0) = 0$
 $u(t) = 1$ for all $t \ge 0$
 $G(s) = \frac{b_0}{s^2 + a_1 s + a_0}$

The system is stable (both roots in LHP) if and only if a_1 , $a_0>0$. For stable systems, the coefficients are typically redefined:

$$\ddot{y}(t) + \underbrace{2\zeta\omega_n}_{=a_1}\dot{y}(t) + \underbrace{\omega_n^2}_{=a_0}y(t) = b_0u(t)$$

where:

- $\omega_n \coloneqq \text{Natural frequency (rad/sec)}$
- ζ := Damping ratio (unitless)

Overdamped/Underdamped Systems

Stable, second-order system:

 $\ddot{y}(t) + 2\zeta\omega_n \dot{y}(t) + \omega_n^2 y(t) = b_0 u(t) \qquad G(s) = \frac{b_0}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Two poles are given by:

$$s_{1,2} = -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Three cases depending on $\zeta^2 - 1$:

- Overdamped, $\zeta \geq 1$: Roots are real and distinct
- Critically Damped, $\zeta = 1$: Roots are real and both at $s_{1,2} = -\zeta \omega_n$
- Underdamped, $\zeta < 1$: Roots are a complex conjugate pair.

Overdamped/Underdamped Systems

Stable, second-order system:

 $\ddot{y}(t) + 2\zeta\omega_n \dot{y}(t) + \omega_n^2 y(t) = b_0 u(t) \qquad G(s) = \frac{b_0}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

 $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$

Two poles are given by:

Over/Critically damped solutions (red/blue) are similar to first-order response.

Underdamped solution (yellow) has overshoot and oscillations.

Underdamped Poles

If $\zeta < 1$ then the poles are:

$$s_{1,2} = -\zeta\omega_n \pm j \underbrace{\omega_n \sqrt{1-\zeta^2}}_{}$$

Imaginary part ω_d is called the the damped natural frequency. Time constant is:

$$au = \frac{1}{\zeta \omega_n}$$

Angle θ is given by: $\sin(\theta) = \zeta$ Angle decreases for

smaller values of ζ .

 $:=\omega_d$

Underdamped Poles

If $\zeta < 1$ then the poles are: $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$ **Example:** $\ddot{y}(t) + 2\dot{y}(t) + 10y(t) = 10u(t)$ $G(s) = \frac{10}{s^2+2s+10}$

$$\omega_n^2 = 10 \Rightarrow \omega_n = \sqrt{10} \approx 3.2 \frac{rad}{sec}$$
$$2\zeta\omega_n = 2 \Rightarrow \zeta = \frac{2}{2\sqrt{10}} \approx 0.32$$
$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 3 \frac{rad}{sec}$$
$$s_{1,2} = -1 \pm 3j$$

Underdamped Poles

If $\zeta < 1$ then the poles are: $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$ **Example:** $\ddot{y}(t) + 2\dot{y}(t) + 10y(t) + 10u(t)$ $G(s) = \frac{10}{s^2 + 2s + 10}$ >> $G = tf(10, [1 \ 2 \ 10]);$ % Display poles, damping ratio, nat. freqs., time constants >> damp(G) Pole Damping Frequency Time Constant (rad/seconds) (seconds) -1.00e+00 + 3.00e+00i 3.16e-01 3.16e+00 1.00e+00 -1.00e+00 - 3.00e+00i 3.16e-01 3.16e+00 1.00e+00

Key Features: Stable, Underdamped Step Response

$$y(t) = \bar{y} \left(1 - e^{-\zeta \omega_n t} \cos(\omega_d t) - e^{-\zeta \omega_n t} \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_d t) \right) \text{ where } \bar{y} := \frac{b_0}{\omega_n^2}$$

- Final Value: $\bar{y} = G(0)\bar{u}$
- $T_s = \frac{3}{\zeta \omega_n}$ • Settling Time:

• Peak Overshoot:
$$M_p = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi}$$
 where $M_p = \frac{y(T_p) - \bar{y}}{\bar{y}}$

 $T_p = \frac{\pi}{\omega_d}$ Peak Time: $T_r \approx \frac{1.8}{\omega_n}$

Rise Time:

Underdamped Step Response

$$y(t) = \bar{y} \left(1 - e^{-\zeta \omega_n t} \cos(\omega_d t) - e^{-\zeta \omega_n t} \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_d t) \right) \text{ where } \bar{y} := \frac{b_0}{\omega_n^2}$$

10

Underdamped Step Response

TD Specs in Frequency Domain

We want to *visualize* time-domain specs in terms of *admissible pole locations* for the 2nd-order system

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\sigma^2 + \omega_d^2}{(s+\sigma)^2 + \omega_d^2}$$

where $\sigma = \zeta\omega_n$
 $\omega_d = \omega_n \sqrt{1-\zeta^2}$
Step response: $y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$

$$\omega_n^2 = \sigma^2 + \omega_d^2$$
$$\zeta = \cos \varphi$$

Rise Time in Frequency Domain

Suppose we want $t_r \leq c$ (c is some desired given value)

$$t_r \approx \frac{1.8}{\omega_n} \le c \qquad \Longrightarrow \qquad \omega_n \ge \frac{1.8}{c}$$

Geometrically, we want poles to lie in the shaded region:

(recall that ω_n is the magnitude of the poles)

Settling Time in Frequency Domain

Suppose we want $t_s \leq c$

$$t_s \approx \frac{3}{\sigma} \le c \qquad \Longrightarrow \qquad \sigma \ge \frac{3}{c}$$

Want poles to be sufficiently fast (large enough magnitude of real part):

Intuition: poles far to the left \rightarrow transients decay faster \rightarrow smaller t_s