ECE 486: Control Systems

Lecture 4C: Second-Order Step Response

Key Takeaways

This lecture covers the step response for second-order systems.

The step response of a stable, second-order system.

1. Is characterized by the natural frequency and damping ratio of the system
2. Has overshoot and oscillations if the system is underdamped.

Second-Order Step Response

Consider the second-order system:

$$
\begin{aligned}
& \ddot{y}(t)+a_{1} \dot{y}(t)+a_{0} y(t)=b_{0} u(t) \\
& \text { with } y(0)=0, \dot{y}(0)=0 \\
& u(t)=1 \text { for all } t \geq 0
\end{aligned}
$$

$$
G(s)=\frac{b_{0}}{s^{2}+a_{1} s+a_{0}}
$$

The system is stable (both roots in LHP) if and only if $a_{1}, a_{0}>0$.
For stable systems, the coefficients are typically redefined:

$$
\ddot{y}(t)+\underbrace{2 \zeta \omega_{n}}_{=a_{1}} \dot{y}(t)+\underbrace{\omega_{n}^{2}}_{=a_{0}} y(t)=b_{0} u(t)
$$

where:

- $\omega_{n}:=$ Natural frequency (rad/sec)
- $\zeta:=$ Damping ratio (unitless)

Overdamped/Underdamped Systems

Stable, second-order system:

$$
\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=b_{0} u(t) \quad G(s)=\frac{b_{0}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Two poles are given by:

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

Three cases depending on $\zeta^{2}-1$:

- Overdamped, $\zeta \geq 1$: Roots are real and distinct
- Critically Damped, $\zeta=1$: Roots are real and both at $s_{1,2}=-\zeta \omega_{n}$
- Underdamped, $\zeta<1$: Roots are a complex conjugate pair.

Overdamped/Underdamped Systems

Stable, second-order system:

$$
\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=b_{0} u(t) \quad G(s)=\frac{b_{0}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Two poles are given by:

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

Over/Critically damped solutions (red/blue) are similar to first-order response.

Underdamped solution (yellow) has overshoot and oscillations.

Underdamped Poles

If $\zeta<1$ then the poles are:

$$
s_{1,2}=-\zeta \omega_{n} \pm j \underbrace{\omega_{n} \sqrt{1-\zeta^{2}}}_{:=\omega_{d}}
$$

Imaginary part ω_{d} is called the the damped natural frequency. Time constant is:

$$
\tau=\frac{1}{\zeta \omega_{n}}
$$

Angle θ is given by:

$$
\sin (\theta)=\zeta
$$

Angle decreases for smaller values of ζ.

Underdamped Poles

If $\zeta<1$ then the poles are:

$$
s_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
$$

Example:

$$
\ddot{y}(t)+2 \dot{y}(t)+10 y(t)=10 u(t) \quad G(s)=\frac{10}{s^{2}+2 s+10}
$$

$$
\begin{aligned}
& \omega_{n}^{2}=10 \Rightarrow \omega_{n}=\sqrt{10} \approx 3.2 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& 2 \zeta \omega_{n}=2 \Rightarrow \zeta=\frac{2}{2 \sqrt{10}} \approx 0.32 \\
& \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}=3 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& s_{1,2}=-1 \pm 3 j
\end{aligned}
$$

Real

Underdamped Poles

If $\zeta<1$ then the poles are:

$$
s_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
$$

Example:

$$
\ddot{y}(t)+2 \dot{y}(t)+10 y(t)+10 u(t) \quad G(s)=\frac{10}{s^{2}+2 s+10}
$$

>> G = tf(10,[1 2 10]);
\% Display poles, damping ratio, nat. freqs., time constants
>> damp(G)

Pole
$-1.00 e+00+3.00 e+00 i$
$3.16 e-01$
$3.16 e+00$
$1.00 \mathrm{e}+00$
-1.00e+00 - 3.00e+00i
$3.16 e-01$
$3.16 e+00$
$1.00 \mathrm{e}+00$

Key Features: Stable, Underdamped Step Response

$$
y(t)=\bar{y}\left(1-e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t\right)-e^{-\zeta \omega_{n} t} \frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t\right)\right) \text { where } \bar{y}:=\frac{b_{0}}{\omega_{n}^{2}}
$$

- Final Value: $\bar{y}=G(0) \bar{u}$
- Settling Time: $\quad T_{s}=\frac{3}{\zeta \omega_{n}}$
- Peak Overshoot: $M_{p}=e^{-\frac{\zeta}{\sqrt{1-\zeta^{2}}} \pi}$ where $M_{p}=\frac{y\left(T_{p}\right)-\bar{y}}{\bar{y}}$
- Peak Time: $\quad T_{p}=\frac{\pi}{\omega_{d}}$
- Rise Time:

$$
T_{r} \approx \frac{1.8}{\omega_{n}}
$$

Underdamped Step Response

$$
y(t)=\bar{y}\left(1-e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t\right)-e^{-\zeta \omega_{n} t} \frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t\right)\right) \text { where } \bar{y}:=\frac{b_{0}}{\omega_{n}^{2}}
$$

Underdamped Step Response

$$
y(t)=\bar{y}\left(1-e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t\right)-e^{-\zeta \omega_{n} t} \frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t\right)\right) \text { where } \bar{y}:=\frac{b_{0}}{\omega_{n}^{2}}
$$

TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admissible pole locations for the 2nd-order system

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\sigma^{2}+\omega_{d}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

where $\sigma=\zeta \omega_{n}$

$$
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Step response: $y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

$$
\begin{aligned}
\omega_{n}^{2} & =\sigma^{2}+\omega_{d}^{2} \\
\zeta & =\cos \varphi
\end{aligned}
$$

Rise Time in Frequency Domain

Suppose we want $t_{r} \leq c \quad(c$ is some desired given value)
$t_{r} \approx \frac{1.8}{\omega_{n}} \leq c \quad \Longrightarrow \quad \omega_{n} \geq \frac{1.8}{c}$
Geometrically, we want poles to lie in the shaded region:

(recall that ω_{n} is the magnitude of the poles)

Settling Time in Frequency Domain

Suppose we want $t_{s} \leq c$
$t_{s} \approx \frac{3}{\sigma} \leq c \quad \Longrightarrow \quad \sigma \geq \frac{3}{c}$
Want poles to be sufficiently fast (large enough magnitude of real part):

Intuition: poles far to the left \rightarrow transients decay faster \rightarrow smaller t_{s}

