ECE486: Control Systems

▶ Lecture 3C: Steady-state response, DC gain, and final value theorem

Goal: understand what happens to the response when $t \to \infty$?

DC Gain

Definition: the steady-state value of the step response is called the DC gain of the system.

DC gain =
$$y(\infty) = \lim_{t \to \infty} y(t)$$
 for $u(t) = 1(t)$

In our example above, the step response is

$$y(t) = \frac{1}{2}1(t) + (2\alpha + \beta - 1)e^{-t} + (1/2 - \alpha - \beta)e^{-2t}$$

therefore, DC gain = $y(\infty) = 1/2$

Steady-State Value

$$u(t) = 1(t)$$
 $U(s) = \frac{1}{s}$ \Longrightarrow $Y(s) = \frac{H(s)}{s}$

— can we compute $y(\infty)$ from Y(s)?

Let's look at some examples:

•
$$Y(s) = \frac{1}{s+a}, a > 0$$
 (pole at $s = -a < 0$)
 $y(t) = e^{-at} \implies y(\infty) = 0$
• $Y(s) = \frac{1}{s+a}, a < 0$ (pole at $s = -a > 0$)
 $y(t) = e^{-at} \implies y(\infty) = \infty$
• $Y(s) = \frac{1}{s^2 + \omega^2}, \omega \in \mathbb{R}$ (poles at $s = \pm j\omega$, purely imaginary)
 $y(t) = \sin(\omega t) \implies y(\infty)$ does not exist
• $Y(s) = \frac{c}{s}$ (pole at the origin, $s = 0$)
 $y(t) = c1(t) \implies y(\infty) = c$

The Final Value Theorem

We can now deduce the Final Value Theorem (FVT):

If all poles of sY(s) are strictly stable or lie in the open left half-plane (OLHP), i.e., have $\operatorname{Re}(s) < 0$, then

$$y(\infty) = \lim_{s \to 0} sY(s).$$

In our examples, multiply Y(s) by s, check poles:

►
$$Y(s) = \frac{1}{s+a}$$
 $sY(s) = \frac{s}{s+a}$
if $a > 0$, then $y(\infty) = 0$; if $a < 0$, FVT does not give correct
answer

►
$$Y(s) = \frac{c}{s}$$
 $sY(s) = c$
poles at infinity, so $y(\infty) = c$ – FVT gives correct answer

Back to DC Gain

$$u \longrightarrow h \longrightarrow y$$

Step response: $Y(s) = \frac{H(s)}{s}$

— if all poles of sY(s) = H(s) are strictly stable, then

$$y(\infty) = \lim_{s \to 0} H(s)$$

by the FVT.

Example: compute DC gain of the system with transfer function

$$H(s) = \frac{s^2 + 5s + 3}{s^3 + 4s + 2s + 5}$$

All poles of H(s) are strictly stable (we will see this later using the *Routh–Hurwitz criterion*), so

$$y(\infty) = H(s)\Big|_{s=0} = \frac{3}{5}.$$