
ECE486: Control Systems

I Lecture 3B: Calculating dynamic response with arbitrary
I.C.’s Using Method of Partial Fractions

Goal: develop a methodology for characterizing the output of a
given system for given input and initial conditions.



Dynamic Response

u yh

Problem: compute the response y to a given input u
under a given set of initial conditions.

Both the input and the initial conditions can be arbitrary.



Laplace Transforms Revisited

Convolution: L {f ? g} = L {f}L {g}
(useful because Y (s) = H(s)U(s))

Example: ẏ = −y + u y(0) = 0

Compute the response for u(t) = cos t

We already know

H(s) =
1

s+ 1

U(s) =
s

s2 + 1

=⇒ Y (s) = H(s)U(s) =
s

(s+ 1)(s2 + 1)

y(t) = L −1{Y }

— can’t find Y (s) in the tables. So how do we compute y?



Method of Partial Fractions

Problem: compute L −1
{

s

(s+ 1)(s2 + 1)

}
This Laplace transform is not in the tables, but let’s look at the
table anyway. What do we find?

1

s+ 1
L −1

{
1

s+ 1

}
= e−t (#7)

1

s2 + 1
L −1

{
1

s2 + 1

}
= sin t (#17)

s

s2 + 1
L −1

{
s

s2 + 1

}
= cos t (#18)

— so we see some things that are similar to Y (s), but not quite.

This brings us to the method of partial fractions:

I boring (i.e., character-building), but very useful

I allows us to break up complicated fractions into sums of
simpler ones, for which we know L −1 from tables



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We seek a, b, c, such that

Y (s) =
a

s+ 1
+
bs+ c

s2 + 1
(need bs+ c so that deg(num) = deg(den)− 1)

I Find a: multiply by s+ 1 to isolate a

(s+ 1)Y (s) =
s

s2 + 1
= a+

(s+ 1)(as+ b)

(s2 + 1)

— now let s = −1 to “kill” the second term on the RHS:

a = (s+ 1)Y (s)
∣∣∣
s=−1

= −1

2



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We seek a, b, c, such that

Y (s) =
a

s+ 1
+
bs+ c

s2 + 1
(need bs+ c so that deg(num) = deg(den)− 1)

I Find b: multiply by s2 + 1 to isolate bs+ c

(s2 + 1)Y (s) =
s

s+ 1
=
a(s2 + 1)

s+ 1
+ bs+ c

— now let s = j to “kill” the first term on the RHS:

bj + c = (s2 + 1)Y (s)
∣∣∣
s=j

=
j

1 + j

Match Re(·) and Im(·) parts:

c+ bj =
j

1 + j
=

j(1− j)
(1 + j)(1− j)

=
1

2
+
j

2
=⇒ b = c = 1

2



Method of Partial Fractions
Problem: compute L −1{Y (s)}, where

Y (s) =
s

(s+ 1)(s2 + 1)

We found that

Y (s) = − 1

2(s+ 1)
+

s

2(s2 + 1)
+

1

2(s2 + 1)

Now we can use linearity and tables:

y(t) = L −1
{
− 1

2(s+ 1)
+

s

2(s2 + 1)
+

1

2(s2 + 1)

}
= −1

2
L −1

{
1

s+ 1

}
+

1

2
L −1

{
s

s2 + 1

}
+

1

2
L −1

{
1

s2 + 1

}
= −1

2
e−t +

1

2
cos t+

1

2
sin t (from tables)

= −1

2
e−t +

1√
2

cos(t− π/4) (cos(a− b) = cos a cos b+ sin a sin b)



Laplace Transforms and Differentiation
Given a differentiable function f , what is the Laplace transform
L {f ′(t)} of its time derivative?

L {f ′(t)} =

∫ ∞
0

f ′(t)e−stdt

= f(t)e−st
∣∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt (integrate by parts)

= −f(0) + sF (s)

— provided f(t)e−st → 0 as t→∞

L {f ′(t)} = sF (s)− f(0) — this is how we account for I.C.’s

Similarly:

L {f ′′(t)} = L {(f ′(t))′} = sL {f ′(t)} − f ′(0)

= s2F (s)− sf(0)− f ′(0)



Example

Consider the system

ÿ + 3ẏ + 2y = u, y(0) = ẏ(0) = 0

(need two I.C.’s for 2nd-order ODE’s)

Let’s compute the transfer function: H(s) =
Y (s)

U(s)

— take Laplace transform of both sides (zero I.C.’s):

s2Y (s) + 3sY (s) + 2Y (s) = U(s) H(s) =
Y (s)

U(s)
=

1

s2 + 3s+ 2



Example (continued)

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

Compute the step response, i.e., response to u(t) = 1(t)

Caution!! Y (s) = H(s)U(s) no longer holds if α 6= 0 or β 6= 0

Again, take Laplace transforms of both sides, mind the I.C.’s:

s2Y (s)− sα− β + 3sY (s)− 3α+ 2Y (s) = U(s)

U(s) = L {1(t)} = 1/s, which gives

s2Y (s)− sα− β + 3sY (s)− 3α+ 2Y (s) =
1

s

Y (s) =
αs+ (3α+ β) + 1

s

s2 + 3s+ 2
=
αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)

Note: if α = β = 0, then Y (s) =
1

s(s+ 1)(s+ 2)
= H(s)U(s)



Example (continued)
Compute the step response of

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

Y (s) =
αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)
y(t) = L −1{Y (s)}

Use the method of partial fractions:

αs2 + (3α+ β)s+ 1

s(s+ 1)(s+ 2)
=
a

s
+

b

s+ 1
+

c

s+ 2

— this gives a = 1/2, b = 2α+ β − 1, c = −α− β + 1/2

Y (s) =
1

2s
+ (2α+ β − 1)

1

s+ 1
+
−α− β + 1/2

s+ 2

y(t) = L −1{Y (s)} =
1

2
1(t) + (2α+ β − 1)e−t + (1/2− α− β)e−2t



Example (continued)

The step response of

ÿ + 3ẏ + 2y = u, y(0) = α, ẏ(0) = β

is given by

y(t) =
1

2
1(t) + (2α+ β − 1)e−t + (1/2− α− β)e−2t

What are the transient and the steady-state terms?

I The transient terms are e−t, e−2t (decay to zero at exponential
rates −1 and −2)

Note the poles of H(s) =
1

(s+ 1)(s+ 2)
at s = −1 and s = −2

— these are stable poles (both lie in LHP)

I the steady-state part is 1
21(t) — converges to steady-state value

of 1/2


