ECE486: Control Systems

- Lecture 3B: Calculating dynamic response with arbitrary I.C.'s Using Method of Partial Fractions

Goal: develop a methodology for characterizing the output of a given system for given input and initial conditions.

Dynamic Response

Problem: compute the response y to a given input u under a given set of initial conditions.

Both the input and the initial conditions can be arbitrary.

Laplace Transforms Revisited

Convolution: $\mathscr{L}\{f \star g\}=\mathscr{L}\{f\} \mathscr{L}\{g\}$
(useful because $Y(s)=H(s) U(s)$)
Example: $\quad \dot{y}=-y+u \quad y(0)=0$
Compute the response for $u(t)=\cos t$
We already know

$$
\begin{gathered}
H(s)=\frac{1}{s+1} \\
U(s)=\frac{s}{s^{2}+1} \\
\Longrightarrow Y(s)=H(s) U(s)=\frac{s}{(s+1)\left(s^{2}+1\right)} \\
y(t)=\mathscr{L}^{-1}\{Y\}
\end{gathered}
$$

- can't find $Y(s)$ in the tables. So how do we compute y ?

Method of Partial Fractions

Problem: compute $\mathscr{L}^{-1}\left\{\frac{s}{(s+1)\left(s^{2}+1\right)}\right\}$
This Laplace transform is not in the tables, but let's look at the table anyway. What do we find?

$$
\begin{array}{ll}
\frac{1}{s+1} & \mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\}=e^{-t} \\
\frac{1}{s^{2}+1} & \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}=\sin t \\
\frac{s}{s^{2}+1} & \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=\cos t
\end{array}
$$

- so we see some things that are similar to $Y(s)$, but not quite.

This brings us to the method of partial fractions:

- boring (i.e., character-building), but very useful
- allows us to break up complicated fractions into sums of simpler ones, for which we know \mathscr{L}^{-1} from tables

Method of Partial Fractions

Problem: compute $\mathscr{L}^{-1}\{Y(s)\}$, where

$$
Y(s)=\frac{s}{(s+1)\left(s^{2}+1\right)}
$$

We seek a, b, c, such that
$Y(s)=\frac{a}{s+1}+\frac{b s+c}{s^{2}+1} \quad($ need $b s+c$ so that $\operatorname{deg}($ num $)=\operatorname{deg}(\operatorname{den})-1)$

- Find a : multiply by $s+1$ to isolate a

$$
(s+1) Y(s)=\frac{s}{s^{2}+1}=a+\frac{(s+1)(a s+b)}{\left(s^{2}+1\right)}
$$

— now let $s=-1$ to "kill" the second term on the RHS:

$$
a=\left.(s+1) Y(s)\right|_{s=-1}=-\frac{1}{2}
$$

Method of Partial Fractions

Problem: compute $\mathscr{L}^{-1}\{Y(s)\}$, where

$$
Y(s)=\frac{s}{(s+1)\left(s^{2}+1\right)}
$$

We seek a, b, c, such that
$Y(s)=\frac{a}{s+1}+\frac{b s+c}{s^{2}+1} \quad($ need $b s+c$ so that $\operatorname{deg}($ num $)=\operatorname{deg}(\operatorname{den})-1)$

- Find b : multiply by $s^{2}+1$ to isolate $b s+c$

$$
\left(s^{2}+1\right) Y(s)=\frac{s}{s+1}=\frac{a\left(s^{2}+1\right)}{s+1}+b s+c
$$

— now let $s=j$ to "kill" the first term on the RHS:

$$
b j+c=\left.\left(s^{2}+1\right) Y(s)\right|_{s=j}=\frac{j}{1+j}
$$

Match $\operatorname{Re}(\cdot)$ and $\operatorname{Im}(\cdot)$ parts:

$$
c+b j=\frac{j}{1+j}=\frac{j(1-j)}{(1+j)(1-j)}=\frac{1}{2}+\frac{j}{2} \Longrightarrow b=c=\frac{1}{2}
$$

Method of Partial Fractions

Problem: compute $\mathscr{L}^{-1}\{Y(s)\}$, where

$$
Y(s)=\frac{s}{(s+1)\left(s^{2}+1\right)}
$$

We found that

$$
Y(s)=-\frac{1}{2(s+1)}+\frac{s}{2\left(s^{2}+1\right)}+\frac{1}{2\left(s^{2}+1\right)}
$$

Now we can use linearity and tables:

$$
\begin{aligned}
y(t) & =\mathscr{L}^{-1}\left\{-\frac{1}{2(s+1)}+\frac{s}{2\left(s^{2}+1\right)}+\frac{1}{2\left(s^{2}+1\right)}\right\} \\
& =-\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\}+\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}+\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& =-\frac{1}{2} e^{-t}+\frac{1}{2} \cos t+\frac{1}{2} \sin t \quad(\text { from tables }) \\
& =-\frac{1}{2} e^{-t}+\frac{1}{\sqrt{2}} \cos (t-\pi / 4) \quad(\cos (a-b)=\cos a \cos b+\sin a \sin b)
\end{aligned}
$$

Laplace Transforms and Differentiation

Given a differentiable function f, what is the Laplace transform $\mathscr{L}\left\{f^{\prime}(t)\right\}$ of its time derivative?

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} \mathrm{~d} t \\
& =\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t \quad \text { (integrate by parts) } \\
& =-f(0)+s F(s)
\end{aligned}
$$

- provided $f(t) e^{-s t} \rightarrow 0$ as $t \rightarrow \infty$

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0) \quad \text { this is how we account for I.C.'s }
$$

Similarly:

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =\mathscr{L}\left\{\left(f^{\prime}(t)\right)^{\prime}\right\}=s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Example

Consider the system

$$
\ddot{y}+3 \dot{y}+2 y=u, \quad y(0)=\dot{y}(0)=0
$$

(need two I.C.'s for 2nd-order ODE's)
Let's compute the transfer function: $H(s)=\frac{Y(s)}{U(s)}$

- take Laplace transform of both sides (zero I.C.'s):

$$
s^{2} Y(s)+3 s Y(s)+2 Y(s)=U(s) \quad H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s^{2}+3 s+2}
$$

Example (continued)

$$
\ddot{y}+3 \dot{y}+2 y=u, \quad y(0)=\alpha, \dot{y}(0)=\beta
$$

Compute the step response, i.e., response to $u(t)=1(t)$
Caution!! $\quad Y(s)=H(s) U(s)$ no longer holds if $\alpha \neq 0$ or $\beta \neq 0$
Again, take Laplace transforms of both sides, mind the I.C.'s:

$$
s^{2} Y(s)-s \alpha-\beta+3 s Y(s)-3 \alpha+2 Y(s)=U(s)
$$

$U(s)=\mathscr{L}\{1(t)\}=1 / s$, which gives

$$
\begin{gathered}
s^{2} Y(s)-s \alpha-\beta+3 s Y(s)-3 \alpha+2 Y(s)=\frac{1}{s} \\
Y(s)=\frac{\alpha s+(3 \alpha+\beta)+\frac{1}{s}}{s^{2}+3 s+2}=\frac{\alpha s^{2}+(3 \alpha+\beta) s+1}{s(s+1)(s+2)}
\end{gathered}
$$

Note: if $\alpha=\beta=0$, then $Y(s)=\frac{1}{s(s+1)(s+2)}=H(s) U(s)$

Example (continued)

Compute the step response of

$$
\begin{gathered}
\ddot{y}+3 \dot{y}+2 y=u, \quad y(0)=\alpha, \dot{y}(0)=\beta \\
Y(s)=\frac{\alpha s^{2}+(3 \alpha+\beta) s+1}{s(s+1)(s+2)} \quad y(t)=\mathscr{L}^{-1}\{Y(s)\}
\end{gathered}
$$

Use the method of partial fractions:

$$
\frac{\alpha s^{2}+(3 \alpha+\beta) s+1}{s(s+1)(s+2)}=\frac{a}{s}+\frac{b}{s+1}+\frac{c}{s+2}
$$

- this gives $a=1 / 2, b=2 \alpha+\beta-1, c=-\alpha-\beta+1 / 2$

$$
\begin{aligned}
Y(s) & =\frac{1}{2 s}+(2 \alpha+\beta-1) \frac{1}{s+1}+\frac{-\alpha-\beta+1 / 2}{s+2} \\
y(t) & =\mathscr{L}^{-1}\{Y(s)\}=\frac{1}{2} 1(t)+(2 \alpha+\beta-1) e^{-t}+(1 / 2-\alpha-\beta) e^{-2 t}
\end{aligned}
$$

Example (continued)

The step response of

$$
\ddot{y}+3 \dot{y}+2 y=u, \quad y(0)=\alpha, \dot{y}(0)=\beta
$$

is given by

$$
y(t)=\frac{1}{2} 1(t)+(2 \alpha+\beta-1) e^{-t}+(1 / 2-\alpha-\beta) e^{-2 t}
$$

What are the transient and the steady-state terms?

- The transient terms are $e^{-t}, e^{-2 t}$ (decay to zero at exponential rates -1 and -2)
Note the poles of $H(s)=\frac{1}{(s+1)(s+2)}$ at $s=-1$ and $s=-2$ - these are stable poles (both lie in LHP)
- the steady-state part is $\frac{1}{2} 1(t)$ - converges to steady-state value of $1 / 2$

