ECE 486: Control Systems

Lecture 2C: Laplace Transform \& Transfer Function

Key Takeaways

Frequency domain tools can be used to characterize systems modeled by linear ODEs with constant coefficients.

This lecture introduces:

- Laplace Transform
- Transfer functions

Laplace Transforms and the Transfer Function

Reminder: the two-sided Laplace transform of a function $f(t)$ is

$$
F(s)=\int_{-\infty}^{\infty} f(\tau) e^{-s \tau} \mathrm{~d} \tau, \quad s \in \mathbb{C}
$$

time domain frequency domain

$$
\begin{array}{ll}
u(t) & U(s) \\
h(t) & H(s) \\
y(t) & Y(s)
\end{array}
$$

convolution in time domain \longleftrightarrow multiplication in frequency domain

$$
y(t)=h(t) \star u(t) \quad \longleftrightarrow \quad Y(s)=H(s) U(s)
$$

The Laplace transform of the impulse response

$$
H(s)=\int_{-\infty}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau
$$

is called the transfer function of the system.

Laplace Transforms and the Transfer Function

$$
Y(s)=H(s) U(s), \quad \text { where } H(s)=\int_{-\infty}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau
$$

Limits of integration:

- We only deal with causal systems - output at time t is not affected by inputs at future times $t^{\prime}>t$
- If the system is causal, then $h(t)=0$ for $t<0-h(t)$ is the response at time t to a unit impulse at time 0
- We will take all other possible inputs (not just impulses) to be 0 for $t<0$, and work with one-sided Laplace transforms:

$$
\begin{aligned}
y(t) & =\int_{0}^{\infty} u(\tau) h(t-\tau) \mathrm{d} \tau \\
H(s) & =\int_{0}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau
\end{aligned}
$$

Laplace Transforms

(see FPE, Appendix A)
One-sided (or unilateral) Laplace transform:

$$
\mathscr{L}\{f(t)\} \equiv F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t \quad\left(\text { really , from } 0^{-}\right)
$$

- for simple functions f, can compute $\mathscr{L} f$ by hand.

Example: unit step

$$
\begin{gathered}
f(t)=1(t)= \begin{cases}1, & t \geq 0 \\
0, & t<0\end{cases} \\
\mathscr{L}\{1(t)\}=\int_{0}^{\infty} e^{-s t} \mathrm{~d} t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s} \quad(\text { pole at } s=0)
\end{gathered}
$$

- this is valid provided $\operatorname{Re}(s)>0$, so that $e^{-s t} \xrightarrow{t \rightarrow+\infty} 0$.

Laplace Transforms

Example: $f(t)=\cos t$

$$
\begin{gathered}
\mathscr{L}\{\cos t\}=\mathscr{L}\left\{\frac{1}{2} e^{j t}+\frac{1}{2} e^{-j t}\right\} \quad \text { (Euler's formula) } \\
=\frac{1}{2} \mathscr{L}\left\{e^{j t}\right\}+\frac{1}{2} \mathscr{L}\left\{e^{-j t}\right\} \quad \quad \text { (linearity) } \\
\mathscr{L}\left\{e^{j t}\right\}=\int_{0}^{\infty} e^{j t} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} e^{(j-s) t} \mathrm{~d} t=\left.\frac{1}{j-s} e^{(j-s) t}\right|_{0} ^{\infty} \\
= \\
\left.\mathscr{L} \frac{1}{j-s} \quad \quad \text { (pole at } s=j\right) \\
\mathscr{L}\left\{e^{-j t}\right\}=\int_{0}^{\infty} e^{-j t} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} e^{-(j+s) t} \mathrm{~d} t=-\left.\frac{1}{j+s} e^{-(j+s) t}\right|_{0} ^{\infty} \\
=\frac{1}{j+s} \quad(\text { pole at } s=-j)
\end{gathered}
$$

- in both cases, require $\operatorname{Re}(s)>0$, i.e., s must lie in the right half-plane (RHP)

Laplace Transforms

Example: $f(t)=\cos t$

$$
\begin{aligned}
\mathscr{L}\{\cos t\} & =\frac{1}{2} \mathscr{L}\left\{e^{j t}\right\}+\frac{1}{2} \mathscr{L}\left\{e^{-j t}\right\} \\
& =\frac{1}{2}\left(-\frac{1}{j-s}+\frac{1}{j+s}\right) \\
& =\frac{1}{2}\left(\frac{-\not \supset-s+\not \supset-s}{(j-s)(j+s)}\right) \\
& =\frac{1}{2}\left(\frac{-2 s}{-1+j \not b-\not j b-s^{2}}\right) \\
& \left.=\frac{s}{s^{2}+1} \quad \quad \text { (poles at } s= \pm j\right)
\end{aligned}
$$

for $\operatorname{Re}(s)>0$

Transfer Function

Convolution: $\mathscr{L}\{f \star g\}=\mathscr{L}\{f\} \mathscr{L}\{g\}$ (useful because $Y(s)=H(s) U(s)$)

Example: $\quad \dot{y}=-y+u \quad y(0)=0$
Compute the response for $u(t)=\cos t$
$\mathscr{L}\{\dot{y}\}=\int_{0}^{\infty} \dot{y} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} e^{-s t} \mathrm{~d} y=\left.y e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} y \mathrm{~d} e^{-s t}$
The first term is 0 since $y(0)=0$ and the real part of s is positive. The second term is $s \int_{0}^{\infty} y e^{-s t} \mathrm{~d} t$, which is $s Y(s)$.

We have $\mathscr{L}\{\dot{y}\}=-\mathscr{L}\{y\}+\mathscr{L}\{u\}$ which leads to

$$
s Y(s)=-Y(s)+U(s) \Longrightarrow Y(s)=\frac{1}{s+1} U(s)
$$

We already know $U(s)=\frac{s}{s^{2}+1}$

$$
\begin{aligned}
\Longrightarrow Y(s) & =H(s) U(s)=\frac{s}{(s+1)\left(s^{2}+1\right)} \\
y(t) & =\mathscr{L}^{-1}\{Y\}
\end{aligned}
$$

Linear ODEs with Constant Coefficients

- An $n^{\text {th }}$ order linear ODE with constant coefficients
$a_{n} y^{[n]}(t)+a_{n-1} y^{[n-1]}(t)+\cdots+a_{1} \dot{y}(t)+a_{0} y(t)=b_{m} u^{[m]}(t)+\cdots+b_{1} \dot{u}(t)+b_{0} u(t)$ ICs: $y(0)=y_{0} ; \dot{y}(0)=\dot{y}_{0} ; \ldots ; y^{[n-1]}(0)=y_{0}^{[n-1]}$
- Proper if $m \leq n$ and strictly proper if $m<n$
- Linear models often arise by approximating a nonlinear model. This step is called linearization and will be covered later in the course.
- Transfer function representation:

$$
G(s):=\frac{b_{m} s^{m}+\cdots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

Example

ODE:

$$
6 \ddot{y}(t)+9 \dot{y}+2 y=4 \dot{u}+8 u
$$

TF:
$G(s)=\frac{4 s+8}{6 s^{2}+9 s+2}$

Matlab: >> $G=t f\left(\left[\begin{array}{ll}4 & 8\end{array}\right],\left[\begin{array}{lll}6 & 9 & 2\end{array}\right]\right)$

$$
G=
$$

$$
4 s+8
$$

$$
6 s^{\wedge} 2+9 s+2
$$

Continuous-time transfer function.
>> [num, den]=tfdata (G);
>> num\{1\}
ans =
$\begin{array}{lll}0 & 4 & 8\end{array}$
>> den\{1\}
ans =
9
2

