ECE 486: Control Systems

- Lecture 22: controllability, stability, and pole-zero cancellations; effect of coordinate transformations; conversion of any controllable system to CCF.

Goal: explore the effect of pole-zero cancellations on internal stability; understand the effect of coordinate transformations on the properties of a given state-space model (transfer function; open-loop poles; controllability).

Reading: FPE, Chapter 7

State-Space Realizations

$$
u \longrightarrow \begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered} \longrightarrow y
$$

- a given transfer function $G(s)$ can be realized using infinitely many state-space models
- certain properties make some realizations preferable to others
- one such property is controllability

Controllability Matrix

Consider a single-input system $(u \in \mathbb{R})$:

$$
\dot{x}=A x+B u, \quad y=C x \quad x \in \mathbb{R}^{n}
$$

The Controllability Matrix is defined as

$$
\mathcal{C}(A, B)=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]
$$

We say that the above system is controllable if its controllability matrix $\mathcal{C}(A, B)$ is invertible.

- As we will see later, if the system is controllable, then we may assign arbitrary closed-loop poles by state feedback of the form $u=-K x$.
- Whether or not the system is controllable depends on its state-space realization.

Example: Computing $\mathcal{C}(A, B)$

Let's get back to our old friend:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right)}_{A}\binom{x_{1}}{x_{2}}+\underbrace{\binom{0}{1}}_{B} u, \quad y=\underbrace{\left(\begin{array}{ll}
1 & 1
\end{array}\right)}_{C}\binom{x_{1}}{x_{2}}
$$

Here, $x \in \mathbb{R}^{2} \Longrightarrow A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{C}(A, B) \in \mathbb{R}^{2 \times 2}$

$$
\begin{aligned}
\mathcal{C}(A, B) & =[B \mid A B] \quad A B=\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right)\binom{0}{1}=\binom{1}{-5} \\
\Longrightarrow \mathcal{C}(A, B) & =\left(\begin{array}{cc}
0 & 1 \\
1 & -5
\end{array}\right)
\end{aligned}
$$

Is this system controllable?

$$
\operatorname{det} \mathcal{C}=-1 \neq 0 \quad \Longrightarrow \quad \text { system is controllable }
$$

Controller Canonical Form

A single-input state-space model

$$
\dot{x}=A x+B u, \quad y=C x
$$

is said to be in Controller Canonical Form (CCF) is the matrices A, B are of the form

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
* & * & * & \ldots & * & *
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

A system in CCF is always controllable!!
(The proof of this for $n>2$ uses the Jordan canonical form, we will not worry about this.)

CCF with Arbitrary Zeros

In our example, we had $G(s)=\frac{s+1}{s^{2}+5 s+6}$, with a minimum-phase zero at $z=-1$.

Let's consider a general zero location $s=z$:

$$
G(s)=\frac{s-z}{s^{2}+5 s+6}
$$

This gives us a CCF realization

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right)}_{A}\binom{x_{1}}{x_{2}}+\underbrace{\binom{0}{1}}_{B} u, \quad y=\underbrace{\left(\begin{array}{ll}
-z & 1
\end{array}\right)}_{C}\binom{x_{1}}{x_{2}}
$$

Since A, B are the same, $\mathcal{C}(A, B)$ is the same \Longrightarrow the system is still controllable.

A system in CCF is controllable for any locations of the zeros.

OCF with Arbitrary Zeros

Start with the CCF

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right)}_{A}\binom{x_{1}}{x_{2}}+\underbrace{\binom{0}{1}}_{B} u, \quad y=\underbrace{\left(\begin{array}{cc}
-z & 1
\end{array}\right)}_{C}\binom{x_{1}}{x_{2}}
$$

Convert to OCF: $\quad\left(A \mapsto A^{T}, B \mapsto C^{T}, C \mapsto B^{T}\right)$

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\underbrace{\left(\begin{array}{ll}
0 & -6 \\
1 & -5
\end{array}\right)}_{\bar{A}=A^{T}}\binom{x_{1}}{x_{2}}+\underbrace{\binom{-z}{1}}_{\bar{B}=C^{T}} u, \quad y=\underbrace{\left(\begin{array}{ll}
0 & 1
\end{array}\right)}_{\bar{C}=B^{T}}\binom{x_{1}}{x_{2}}
$$

We already know that this system realizes the same t.f. as the original system.

But is it controllable?

OCF with Arbitrary Zeros

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\underbrace{\left(\begin{array}{ll}
0 & -6 \\
1 & -5
\end{array}\right)}_{\bar{A}=A^{T}}\binom{x_{1}}{x_{2}}+\underbrace{\binom{-z}{1}}_{\bar{B}=C^{T}} u, \quad y=\underbrace{\left(\begin{array}{ll}
0 & 1
\end{array}\right)}_{\bar{C}=B^{T}}\binom{x_{1}}{x_{2}}
$$

Let's find the controllability matrix:

$$
\begin{aligned}
\mathcal{C}(\bar{A}, \bar{B}) & =[\bar{B} \mid \bar{A} \bar{B}] \quad \bar{A} \bar{B}=\left(\begin{array}{cc}
0 & -6 \\
1 & -5
\end{array}\right)\binom{-z}{1}=\binom{-6}{-z-5} \\
\therefore \mathcal{C}(\bar{A}, \bar{B}) & =\left(\begin{array}{cc}
-z & -6 \\
1 & -z-5
\end{array}\right) \\
\operatorname{det} \mathcal{C} & =z(z+5)+6=z^{2}+5 z+6=0 \quad \text { for } z=-2 \text { or } z=-3
\end{aligned}
$$

The OCF realization of the transfer function $G(s)=\frac{s-z}{s^{2}+5 s+6}$ is not controllable when $z=-2$ or -3 , even though the CCF is always controllable.

Beware of Pole-Zero Cancellations!

The OCF realization of the transfer function

$$
G(s)=\frac{s-z}{s^{2}+5 s+6}
$$

is not controllable when $z=-2$ or -3 , even though the CCF is always controllable.

Let's examine $G(s)$ when $z=-2$:

$$
G(s)=\left.\frac{s-z}{s^{2}+5 s+6}\right|_{z=-2}=\frac{s+2}{(s+2)(s+3)}=\frac{1}{s+3}
$$

- pole-zero cancellation!

For $z=-2, G(s)$ is a first-order transfer function, which can always be realized by this 1st-order controllable model:

$$
\dot{x}_{1}=-3 x_{1}+u, y=x_{1} \quad \longrightarrow \quad G(s)=\frac{1}{s+3}
$$

Beware of Pole-Zero Cancellations!!

We can look at this from another angle: consider the t.f.

$$
G(s)=\frac{1}{s+3}
$$

We can realize it using a one-dimensional controllable state-space model

$$
\dot{x}_{1}=-3 x_{1}+u, \quad y=x_{1}
$$

or a noncontrollable two-dimensional state-space model

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
0 & -6 \\
1 & -5
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{2}{1} u, \quad y=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

- certainly not the best way to realize a simple t.f.!

Thus, even the state dimension of a realization of a given t.f. is not unique!!

Beware of Pole-Zero Cancellations!!

Here is a really bad realization of the t.f.

$$
G(s)=\frac{1}{s+3}
$$

Use a two-dimensional model:

$$
\begin{aligned}
\dot{x}_{1} & =-3 x_{1}+u \\
\dot{x}_{2} & =100 x_{2} \\
y & =x_{1}
\end{aligned}
$$

- x_{2} is not affected by the input u (i.e., it is an uncontrollable mode), and not visible from the output y
- does not change the transfer function
- ... and yet, horrible to implement: $x_{2}(t) \propto e^{100 t}$

The transfer function can mask undesirable internal state behavior!!

Pole-Zero Cancellations and Stability

- In case of a pole-zero cancellation, the t.f. contains much less information than the state-space model because some dynamics are "hidden."
- These dynamics can be either good (stable) or bad (unstable), but we cannot tell from the t.f.
- Our original definition of stability (no RHP poles) is flawed because there can be RHP eigenvalues of the system matrix A that are canceled by zeros, yet they still have dynamics associated with them.

Definition of Internal Stability (State-Space Version): a state-space model with matrices (A, B, C, D) is internally stable if all eigenvalues of the A matrix are in LHP.
This is equivalent to having no RHP open-loop poles and no pole-zero cancellations in RHP.

Coordinate Transformations

Now that we have seen that a given transfer function can have many different state-space realizations, we would like a systematic procedure of generating such realizations, preferably with favorable properties (like controllability).

One such procedure is by means of coordinate transformations.

Coordinate Transformations

$$
\begin{aligned}
& x \longmapsto \bar{x}=T x, \\
& x=T^{-1} \bar{x}
\end{aligned}
$$

$$
T \in \mathbb{R}^{n \times n} \text { nonsingular }
$$

(go back and forth between the coordinate systems)

Coordinate Transformations

For example,

$$
\binom{x_{1}}{x_{2}} \longmapsto\binom{\bar{x}_{1}}{\bar{x}_{2}}=\binom{x_{1}+x_{2}}{x_{1}-x_{2}}
$$

This can be represented as

$$
\bar{x}=T x, \quad \text { where } T=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

The transformation is invertible: $\operatorname{det} T=-2$, and

$$
T^{-1}=\frac{1}{\operatorname{det} T}\left(\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Or we can see this directly:

$$
\bar{x}_{1}+\bar{x}_{2}=2 x_{1} ; \quad \bar{x}_{1}-\bar{x}_{2}=2 x_{2}
$$

Coordinate Transformations and State-Space Models

Consider a state-space model

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

and a change of coordinates $\bar{x}=T x$ (T invertible).
What does the system look like in the new coordinates?

$$
\begin{aligned}
\dot{\bar{x}} & =\dot{T} x=T \dot{x} \\
& =T(A x+B u) \\
& =T\left(A T^{-1} \bar{x}+B u\right) \\
& =\underbrace{T A T^{-1}}_{\bar{A}} \bar{x}+\underbrace{T B}_{\bar{B}} u \\
y & =C x \\
& =\underbrace{C T^{-1}}_{\bar{C}} \bar{x}
\end{aligned}
$$

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y
\end{array}
$$

where

$$
\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}
$$

What happens to

- the transfer function?
- the controllability matrix?

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

Claim: The transfer function doesn't change.
Proof:

$$
\begin{aligned}
\bar{G}(s) & =\bar{C}(I s-\bar{A})^{-1} \bar{B} \\
& =\left(C T^{-1}\right)\left(I s-T A T^{-1}\right)^{-1}(T B) \\
& =C T^{-1}\left(T I T^{-1} s-T A T^{-1}\right)^{-1} T B \\
& =C T^{-1}\left[T(I s-A) T^{-1}\right]^{-1} T B \\
& =C \underbrace{T^{-1} T}_{I}(I s-A)^{-1} \underbrace{T^{-1} T}_{I} B \\
& =C(I s-A)^{-1} B \equiv G(s)
\end{aligned}
$$

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y=\bar{C} \bar{x}
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$
The transfer function doesn't change.
In fact:

- open-loop poles don't change
- characteristic polynomial doesn't change:

$$
\begin{aligned}
\operatorname{det}(I s-\bar{A}) & =\operatorname{det}\left(I s-T A T^{-1}\right) \\
& =\operatorname{det}\left[T(I s-A) T^{-1}\right] \\
& =\operatorname{det} T \cdot \operatorname{det}(I s-A) \cdot \operatorname{det} T^{-1} \\
& =\operatorname{det}(I s-A)
\end{aligned}
$$

Coordinate Transformations and State-Space Models

$$
\begin{array}{lrr}
\dot{x} & =A x+B u \quad \xrightarrow{T} & \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x & y
\end{array}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$

Claim: Controllability doesn't change.
Proof: For any $k=0,1, \ldots$,
$\bar{A}^{k} \bar{B}=\left(T A T^{-1}\right)^{k} T B=T A^{k} T^{-1} T B=T A^{k} B \quad$ (by induction)
Therefore, $\mathcal{C}(\bar{A}, \bar{B})=\left[T B|T A B| \ldots \mid T A^{n-1} B\right]$

$$
\begin{aligned}
& =T\left[B|A B| \ldots \mid A^{n-1} B\right] \\
& =T \mathcal{C}(A, B)
\end{aligned}
$$

Since $\operatorname{det} T \neq 0, \operatorname{det} \mathcal{C}(\bar{A}, \bar{B}) \neq 0$ if and only if $\operatorname{det} \mathcal{C}(A, B) \neq 0$.
Thus, the new system is controllable if and only if the old one is.

Coordinate Transformations and State-Space Models

$$
\begin{array}{lr}
\dot{x}=A x+B u \quad \xrightarrow{T}=\bar{A} \bar{x}+\bar{B} u \\
y & =C x
\end{array} \quad y=\bar{C} \bar{x}
$$

where $\bar{A}=T A T^{-1}, \quad \bar{B}=T B, \quad \bar{C}=C T^{-1}$
Note: The controllability matrix does change:

$$
\begin{aligned}
\underbrace{\mathcal{C}(\bar{A}, \bar{B})}_{\text {new }} & =\underbrace{T}_{\substack{\text { corrd. } \\
\text { trans. }}} \underbrace{\mathcal{C}(A, B)}_{\text {old }} \\
T & =\mathcal{C}(\bar{A}, \bar{B})[\mathcal{C}(A, B)]^{-1}
\end{aligned}
$$

This is a recipe for going from one controllable realization of a given t.f. to another.

CCF is the most convenient controllable realization of a given t.f., so we want to convert a given controllable system to CCF (useful for control design).

Example: Converting a Controllable System to CCF

Note!! The way I do this is different from the textbook.
Consider $A=\left(\begin{array}{ll}-15 & 8 \\ -15 & 7\end{array}\right), B=\binom{1}{1}(C$ is immaterial $)$.
Convert to CCF if possible.
Step 1: check for controllability.

$$
\begin{array}{cl}
A B=\left(\begin{array}{ll}
-15 & 8 \\
-15 & 7
\end{array}\right)\binom{1}{1}= & \binom{-7}{-8} \quad \Longrightarrow \quad \mathcal{C}=\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right) \\
& - \text { controllable }
\end{array}
$$

Example: Converting a Controllable System to CCF

Step 2: Determine desired $\mathcal{C}(\bar{A}, \bar{B})$.
We need to figure out \bar{A} and \bar{B}.
For CCF, we must have

$$
\bar{A}=\left(\begin{array}{cc}
0 & 1 \\
-a_{2} & -a_{1}
\end{array}\right), \quad \bar{B}=\binom{0}{1},
$$

so we need to find the coefficients a_{1}, a_{2}.
Recall: the characteristic polynomial does not change:

$$
\begin{aligned}
\operatorname{det}(I s-A) & =\operatorname{det}(I s-\bar{A}) \\
\operatorname{det}\left(\begin{array}{cc}
s+15 & -8 \\
15 & s-7
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
s & -1 \\
a_{2} & s+a_{1}
\end{array}\right) \\
(s+15)(s-7)+120 & =s\left(s+a_{1}\right)+a_{2} \\
s^{2}+8 s+15 & =s^{2}+a_{1} s+a_{2}
\end{aligned}
$$

Example: Converting a Controllable System to CCF

Step 2: Determine desired $\mathcal{C}(\bar{A}, \bar{B})$.
We need to figure out \bar{A} and \bar{B}.
For CCF, we must have

$$
\bar{A}=\left(\begin{array}{cc}
0 & 1 \\
-a_{2} & -a_{1}
\end{array}\right), \quad \bar{B}=\binom{0}{1} .
$$

We have just computed

$$
\bar{A}=\left(\begin{array}{cc}
0 & 1 \\
-15 & -8
\end{array}\right), \quad \bar{B}=\binom{0}{1}
$$

Therefore, the new controllability matrix should be

$$
\mathcal{C}(\bar{A}, \bar{B})=[\bar{B} \mid \bar{A} \bar{B}]=\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)
$$

Example: Converting a Controllable System to CCF Step 3: Compute T.
Recall: $T=\mathcal{C}(\bar{A}, \bar{B}) \cdot[\mathcal{C}(A, B)]^{-1}$

$$
\begin{aligned}
\mathcal{C}(A, B) & =\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right) \\
{[\mathcal{C}(A, B)]^{-1} } & =\left(\begin{array}{ll}
1 & -7 \\
1 & -8
\end{array}\right)^{-1} \\
& =\frac{1}{-1}\left(\begin{array}{ll}
-8 & 7 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
8 & -7 \\
1 & -1
\end{array}\right) \\
\mathcal{C}(\bar{A}, \bar{B}) & =\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right) \\
T & =\left(\begin{array}{cc}
0 & 1 \\
1 & -8
\end{array}\right)\left(\begin{array}{ll}
8 & -7 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

In the next lecture, we will see why CCF is so useful.

