ECE 486: Control Systems

Lecture 20A: Frequency Domain Performance

Key Takeaways

Most design requirements can be specified in the frequency domain as bounds:

A) Good reference tracking and disturbance rejection

 $|S(j\omega)| \ll 1$ at low frequencies

B) Good noise rejection

 $|T(j\omega)| \ll 1$ at high frequencies

C) Reasonable control commands

 $|K(j\omega)S(j\omega)|$ is bounded

D) Good robustness

 $|S(j\omega)| \le 2.5$ at all frequencies

Requirements: Closed-Loop Stability + Robustness

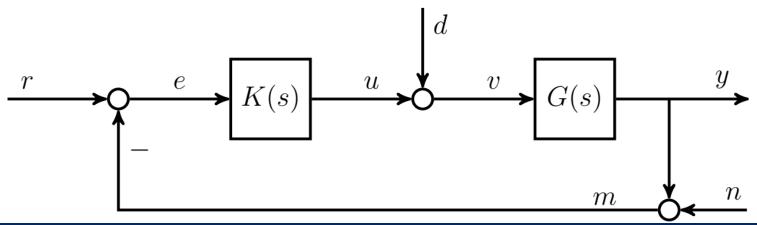
Fact: Closed-loop is stable if and only if all zeros of 1+G(s)K(s) are in the LHP.

We require:

A) G(s)K(s) has no pole/zero cancellations in the CRHP

B)
$$S(s) = \frac{1}{1+G(s)K(s)}$$
 is stable

We also showed previously that $|S(j\omega)| \le 2.5$ at all frequencies ensures good disk margins.



Requirements: Reference Tracking

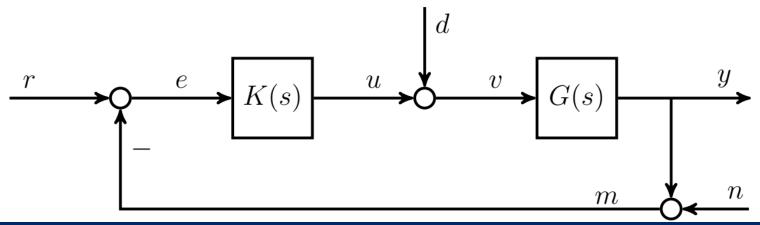
Goal: The output y should track the reference command r. The transfer function from r to e=r-y is:

$$S(s) = \frac{1}{1 + G(s)K(s)}$$
 (Sensitivity)

Consider a sinusoidal reference $r(t) = R_0 \cos(\omega t)$. Then: $e(t) \rightarrow |S(j\omega)|R_0 \cos(\omega t + \angle S(j\omega))$

We require $|S(j\omega)| \ll 1$ for good tracking at ω .

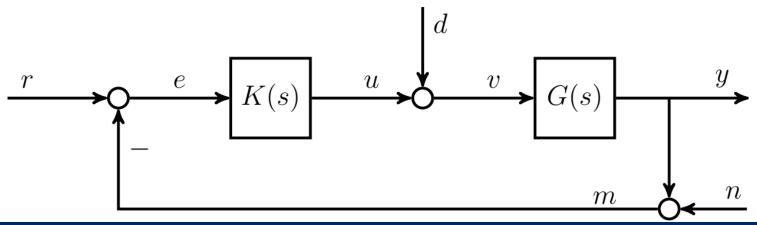
If $\omega = 0$ then $r(t) = R_0$ (step) and $e(t) \rightarrow S(j0)R_0$.



Requirements: Disturbance Rejection

- **Goal:** The disturbance d should have small effect on output y. The transfer function from d to y is G(s) in open loop and G(s)S(s) in closed-loop.
- Consider a sinusoidal disturbance $d(t) = D_0 \cos(\omega t)$. Then: (OL) $y(t) \rightarrow |G(j\omega)|D_0 \cos(\omega t + \angle G(j\omega))$
- (CL) $y(t) \rightarrow |G(j\omega)S(j\omega)|D_0 \cos(\omega t + \angle G(j\omega)S(j\omega))$

We require $|S(j\omega)| \ll 1$ for good disturbance rejection at ω .



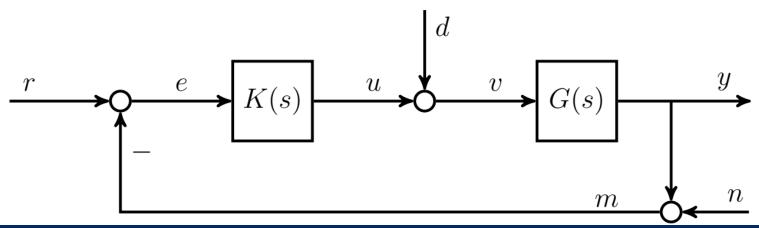
Requirements: Noise Rejection

Goal: The noise n should have small effect on output y. The transfer function from n to y is -T(s) where:

$$T(s) = \frac{G(s)K(s)}{1+G(s)K(s)}$$
 (Complementary Sensitivity)

Consider a sinusoidal noise $n(t) = N_0 \cos(\omega t)$. Then: $y(t) \rightarrow -|T(j\omega)|N_0 \cos(\omega t + \angle T(j\omega))$

We require $|T(j\omega)| \ll 1$ for good noise rejection at ω .

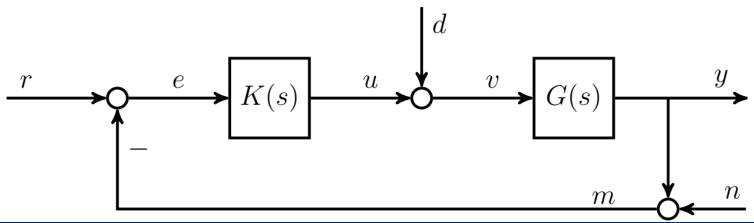


Requirements: Control Effort

Goal: The control *u* should remain within allowable limits. The transfer function from *r* to *u* is *K*(*s*)*S*(*s*).

- Consider a sinusoidal reference $r(t) = R_0 \cos(\omega t)$. Then: $u(t) \rightarrow |K(j\omega)S(j\omega)|R_0 \cos(\omega t + \angle K(j\omega)S(j\omega))$
- To remain within saturation limits $|u(t)| \le u_{max}$, $|K(j\omega)S(j\omega)|R_0 \le u_{max} \Rightarrow |K(j\omega)S(j\omega)| \le \frac{u_{max}}{R_0}$

We also need to ensure that *n* does not cause large *u*.

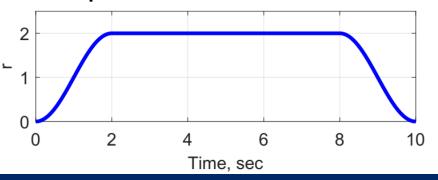


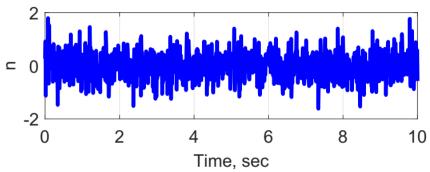
Design Requirements: S(s) vs. T(s)

Reference tracking and disturbance rejection: $|S(j\omega)| \ll 1$ Noise rejection: $|T(j\omega)| \ll 1$

However S(s)+T(s)=1 so we can't have both $|S(j\omega)| \ll 1$ and $|T(j\omega)| \ll 1$ at the same frequency. This conflict is resolved by splitting the requirements by frequency:

 $|S(j\omega)| \ll 1$ at low frequencies and $|T(j\omega)| \ll 1$ at high frequencies.





Plant:

$$\dot{y}(t) = u(t)$$
 with $G(s) = \frac{1}{s}$

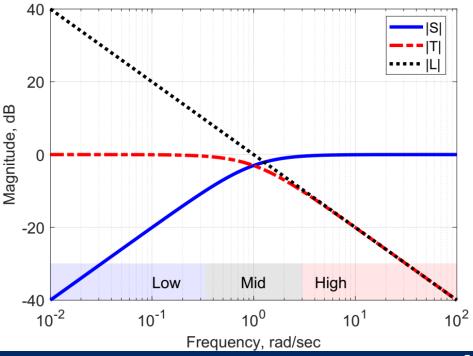
Controller:

Loop:

$$u(t) = K_p e(t)$$
 with $K(s) =$
 $L(s) = G(s)K(s) = \frac{K_p}{s}$

Sensitivity: $S(s) = \frac{1}{1+G(s)K(s)} = \frac{s}{s+K_p}$

Complementary Sensitivity: $T(s) = \frac{G(s)K(s)}{1+G(s)K(s)} = \frac{K_p}{s+K_p}$



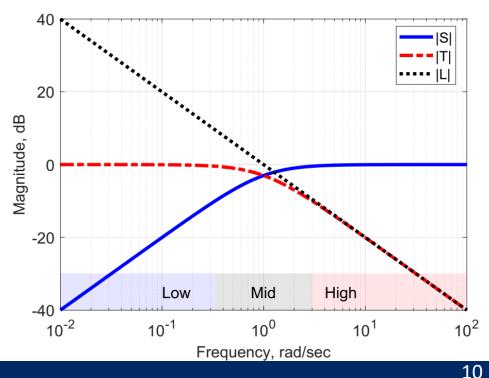
Bode magnitude plots for $K_p = 1$.

 K_p

Low Frequencies: Good reference tracking and disturbance rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference tracking and disturbance rejection.

Middle Frequencies: Loop bandwidth ω_L is where $|L(j\omega_L)| = 1$.



Loop bandwidth:

$$L(s) = \frac{K_p}{s} \Rightarrow \omega_L = K_p$$

Closed-loop time constant:

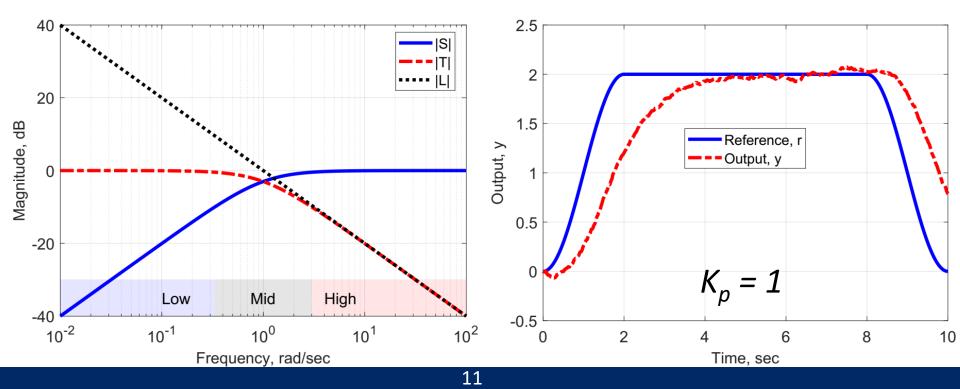
$$S(s) = \frac{s}{s+K_p} \Rightarrow \tau = \frac{1}{K_p}$$

Higher bandwidths correspond to faster response.

Low Frequencies: Good reference tracking and disturbance rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference tracking and disturbance rejection.

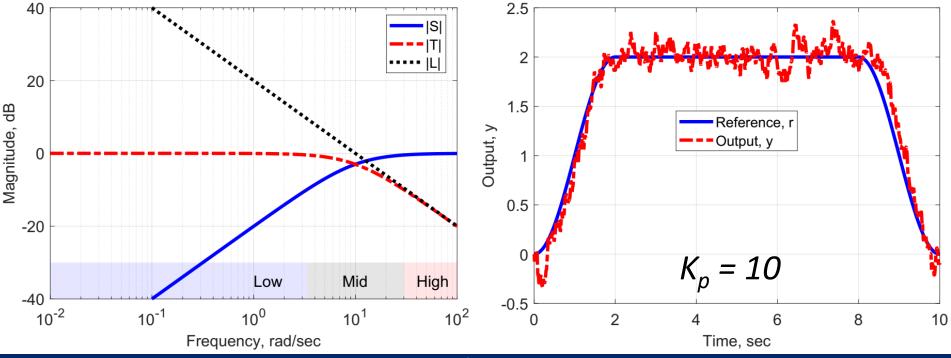
Middle Frequencies: Loop bandwidth ω_L is where $|L(j\omega_L)| = 1$.



Low Frequencies: Good reference tracking and disturbance rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference tracking and disturbance rejection.

Middle Frequencies: Loop bandwidth ω_L is where $|L(j\omega_L)| = 1$.



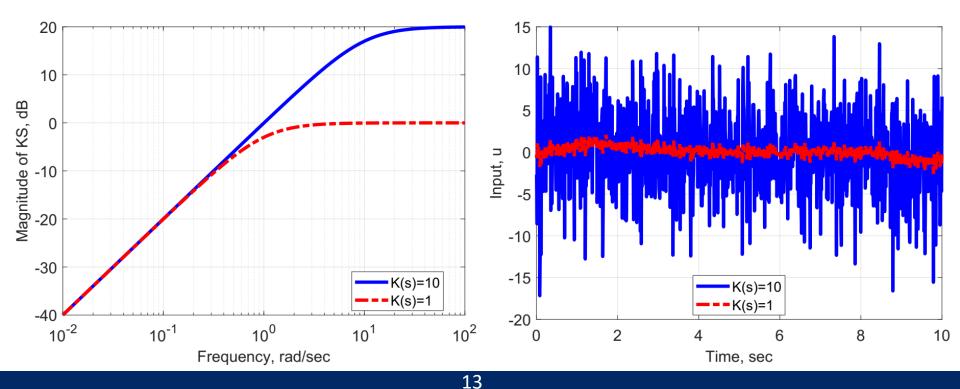
12

Control Effort

Plant: $\dot{y}(t) = u(t)$ with $G(s) = \frac{1}{s}$

Controller: $u(t) = K_p e(t)$ with $K(s) = K_p$

Closed-loop r to u: $K(s)S(s) = \frac{K_p s}{s+K_p}$



ECE 486: Control Systems

Lecture 20B: Introduction to Loopshaping

Key Takeaways

Loopshaping is a design method that focuses on the loop L(s). We build the controller from components targeting low, middle, and high frequencies.

Low Frequencies: Good reference tracking / disturbance rejection. $|S(j\omega)| \ll 1 \Leftrightarrow |L(j\omega)| \gg 1$

High Frequencies: Good noise rejection. $|T(j\omega)| \ll 1 \Leftrightarrow |L(j\omega)| \ll 1$

Middle Frequencies (Crossover Region):

Speed of Response: Loop bandwidth ω_L such that $|L(j\omega_L)| = 1$ Stability/Robustness: Transition with a shallow slope.

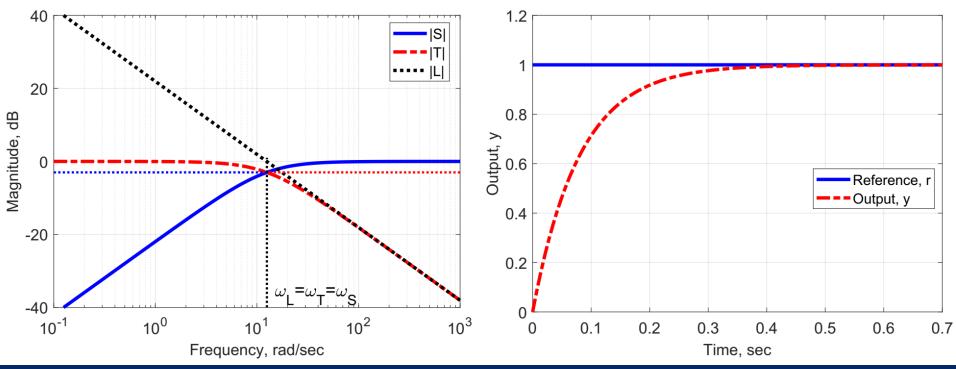
Speed of Response: Bandwidth

- For first- and second-order systems we used settling time and/or rise time as measures of the speed of response.
- For higher-order systems, an alternative frequency domain notion for speed of response is useful: bandwidth.
- **1.** Loop Bandwidth, ω_L : Smallest frequency with $|L(j\omega_L)| = 1$.
- **2.** Sensitivity Bandwidth, ω_S : Highest frequency such that $|S(j\omega)| \leq \frac{1}{\sqrt{2}} = -3dB$ for all $\omega \leq \omega_S$
- **3.** Complementary Sensitivity Bandwidth, ω_T : Lowest frequency such that

$$|T(j\omega)| \leq \frac{1}{\sqrt{2}} = -3dB$$
 for all $\omega \geq \omega_T$

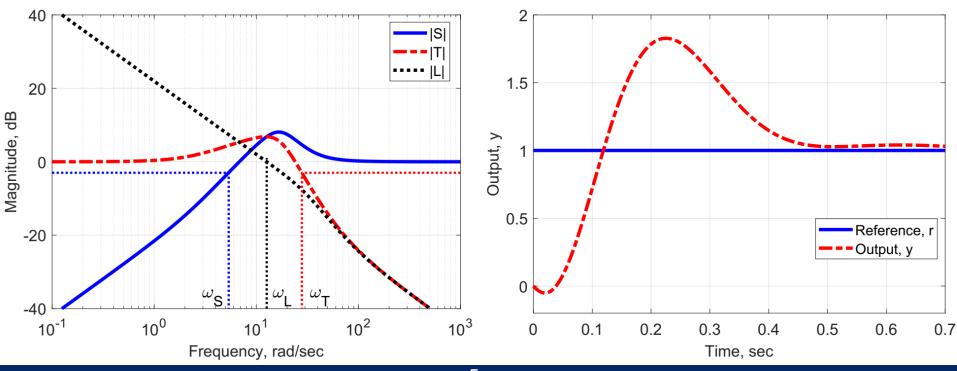
Speed of Response: Bandwidth

Example: $G(s) = \frac{1}{s}$ and K(s) = 12.5Bandwidths: $\omega_L = \omega_T = \omega_S = 12.5 \frac{rad}{sec}$ Note that $S(s) = \frac{s}{s+12.5} \Rightarrow$ Time Constant $\tau = \frac{1}{12.5}sec = \frac{1}{\omega_L}$



Speed of Response: Bandwidth

Example:
$$G(s) = \frac{-0.5s^2 + 1250}{s^3 + 47s^2 + 850s - 3000}$$
 and $K(s) = \frac{10s + 30}{s}$
Bandwidths: $\omega_S = 5\frac{rad}{sec}$, $\omega_L = 12.5\frac{rad}{sec}$, $\omega_T = 28\frac{rad}{sec}$
Settling Time is $\approx 0.6sec = \frac{3}{\omega_S}$



Bode Gain-Phase Relation

Loopshaping focuses on $|L(j\omega)|$ with less emphasis on $\angle L(j\omega)$.

Fact: Assume *L(s)* has all poles and zeros in the LHP. Then: $\angle L(j\omega_0) \approx \angle L(0) + \frac{90^o}{20dB} \times \frac{d|L(j\omega)|_{dB}}{d\log_{10}\omega}\Big|_{\omega=\omega_0}$

Comments:

1. The approximation is accurate if the slope is roughly constant for $\omega \in \left[\frac{\omega_0}{\sqrt{10}}, \sqrt{10}\omega_0\right]$.

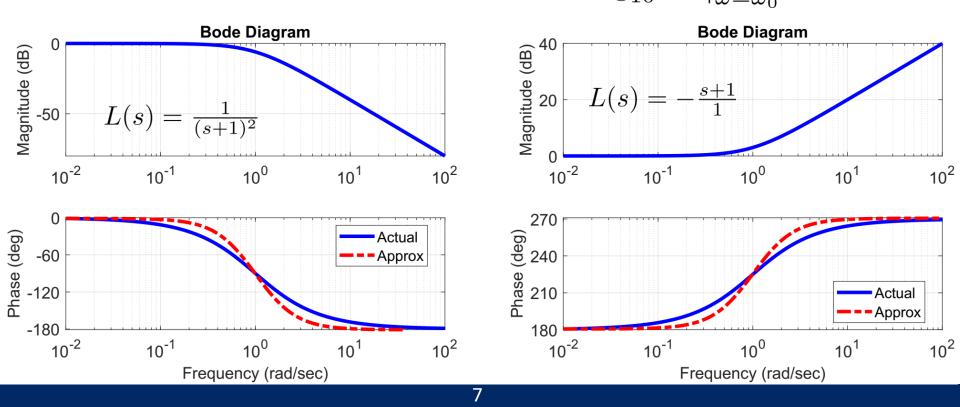
2. The approximation arises from an exact formula by Bode.

3. The phase change from $\omega = 0$ to ω_0 is $\pm 90^o$ for every $\pm 20 \frac{dB}{decade}$ of slope.

Bode Gain-Phase Relation

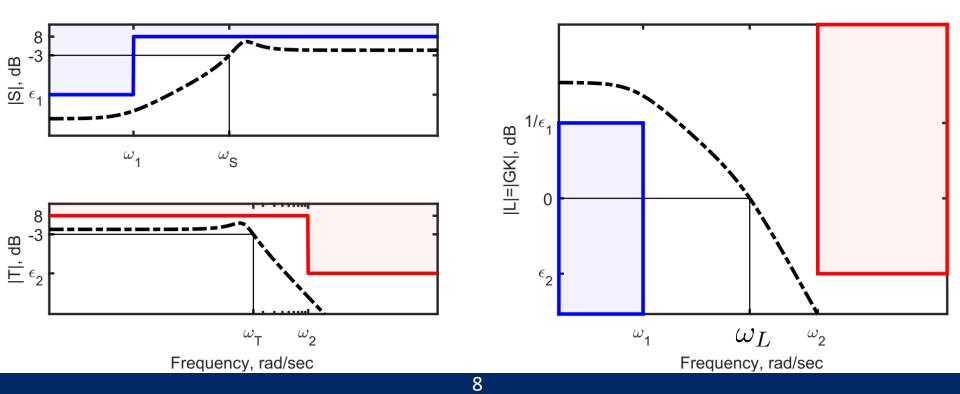
Loopshaping focuses on $|L(j\omega)|$ with less emphasis on $\angle L(j\omega)$.

Fact: Assume *L(s)* has all poles and zeros in the LHP. Then: $\angle L(j\omega_0) \approx \angle L(0) + \frac{90^o}{20dB} \times \frac{d|L(j\omega)|_{dB}}{d\log_{10}\omega}\Big|_{\omega=\omega_0}$



Requirements on the Loop *L(s)*

Recall $L(s) = G(s)K(s), S(s) = \frac{1}{1+L(s)}, T(s) = \frac{L(s)}{1+L(s)}$ Low Frequencies: $|S(j\omega)| \ll 1 \Leftrightarrow |L(j\omega)| \gg 1$ Note: $|L(j\omega)| \gg 1 \Leftrightarrow |K(j\omega)S(j\omega)| \approx \frac{1}{|G(j\omega)|}$ High Frequencies: $|T(j\omega)| \ll 1 \Leftrightarrow |L(j\omega)| \ll 1$

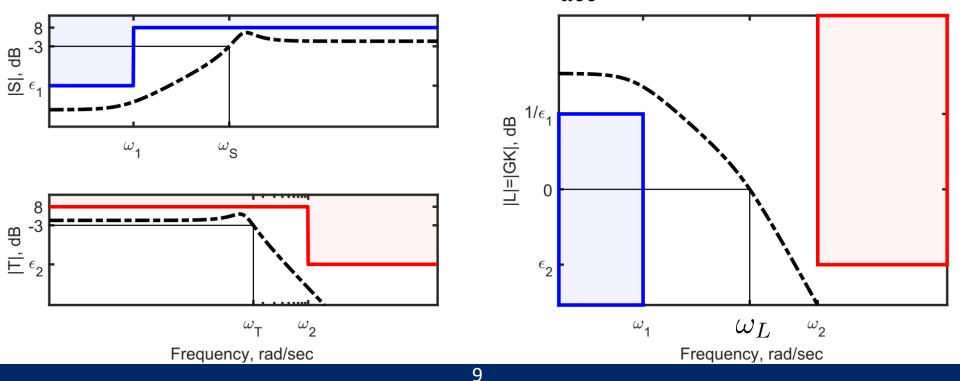


Requirements on the Loop *L(s)*

Middle Frequencies (Crossover Region): The slope near ω_L should not be too steep to ensure stability and robustness.

-A slope of $\approx -40 \frac{dB}{dec}$ means $\angle L(j\omega) \approx -180^{\circ}$ and closed-loop will be unstable and/or have poor phase margins.

-Slope should not be steeper than $\approx -30 \frac{dB}{dec}$ to ensure 45° margin.



ECE 486: Control Systems

Lecture 20C: Controller Components For Loopshaping

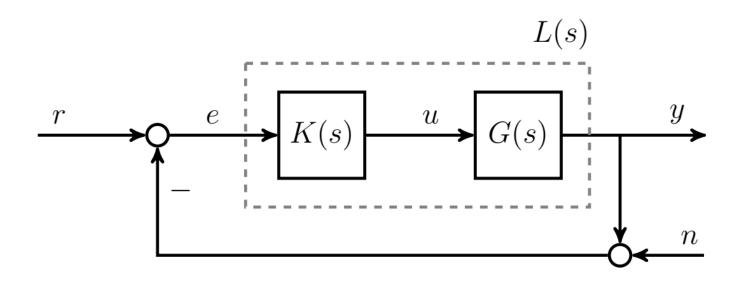
Key Takeaways

Loopshaping builds controllers from the following components:

- **A) Proportional Gain:** A gain (> 1) increases the loop magnitude at all frequencies. This increases bandwidth and reduces steady state error but degrades noise rejection.
- **B) Integral Boost:** Increases the low frequency gain but leaves the high frequencies unchanged. This gives zero steady state error but has negligible effect on bandwidth and noise sensitivity.
- **C) High Frequency Roll-off:** Decreases the high frequency gain but leaves the low frequencies unchanged. This improves noise rejection but has negligible effect on bandwidth and steady-state error.
- **D) Lead:** Makes the slope more shallow near the crossover frequency. This improves robustness but it slightly degrades both the low frequency tracking and high frequency noise rejection.

Example

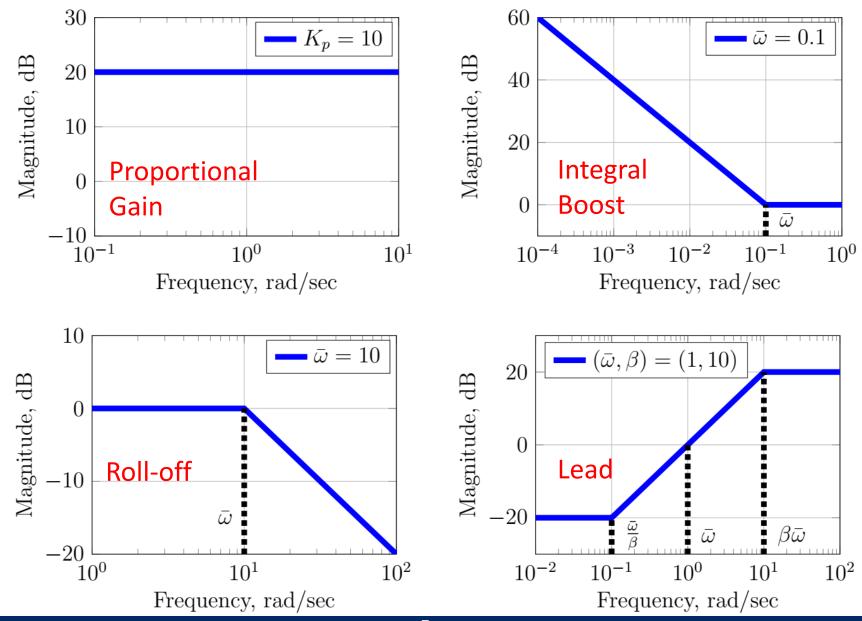
Plant: $\dot{y}(t) + 2y(t) = 5u(t)$ and $G(s) = \frac{5}{s+2}$ Control: K(s) = 1 $L(s) = G(s)K(s) = G(s), \quad S(s) = \frac{1}{1+G(s)} = \frac{s+2}{s+7}, \quad T(s) = \frac{G(s)}{1+G(s)} = \frac{5}{s+7}$



Example

 $\dot{y}(t) + 2y(t) = 5u(t)$ and $G(s) = \frac{5}{s+2}$ **Plant: Control:** K(s) = 1 $L(s) = G(s)K(s) = G(s), \quad S(s) = \frac{1}{1+G(s)} = \frac{s+2}{s+7}, \quad T(s) = \frac{G(s)}{1+G(s)} = \frac{5}{s+7}$ $\dot{e}(t) + 7e(t) = \dot{r}(t) + 2r(t) \implies \text{If } r(t) \to \bar{r} \text{ then } e(t) \to S(0)\bar{r}$ $\Rightarrow r(t) \rightarrow 2$ then $e(t) \rightarrow \frac{2}{7} \cdot 2 \approx 0.57$ 10 Magnitude, dB -10 -20 -30 2.5 10 2 $\omega_L = 4.6 \frac{rad}{sec}$ ••••• |G| 1.5 10^{0} 10^{-2} 10^{-1} 10^{1} 10^{2} Output, y 1 Frequency, rad/sec 01 Magnitude, dB -10 -20 -30 10 0.5 Reference, r Output, y S 0 10⁻² 10^{0} 10^{2} -0.5 10^{-1} 10^{1} 2 6 8 10 12 0 4 Frequency, rad/sec Time, sec

Controller Components



Proportional Gain

Proportional Gain: $K(s) = K_p$

Recall the following fact for Bode magnitudes in dB:

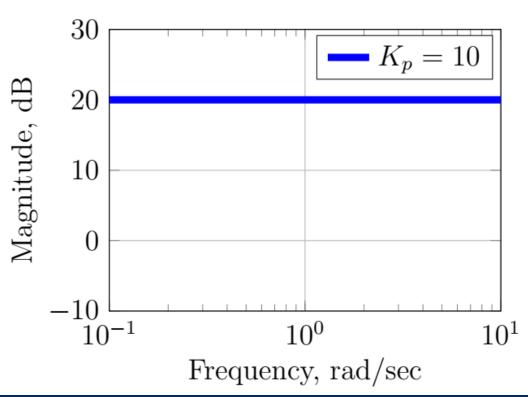
 $20\log_{10}|G(j\omega)K(j\omega)| = 20\log_{10}|G(j\omega)| + 20\log_{10}|K(j\omega)|$

Properties:

-If Kp>1 then gain shifts entire loop mag. up.

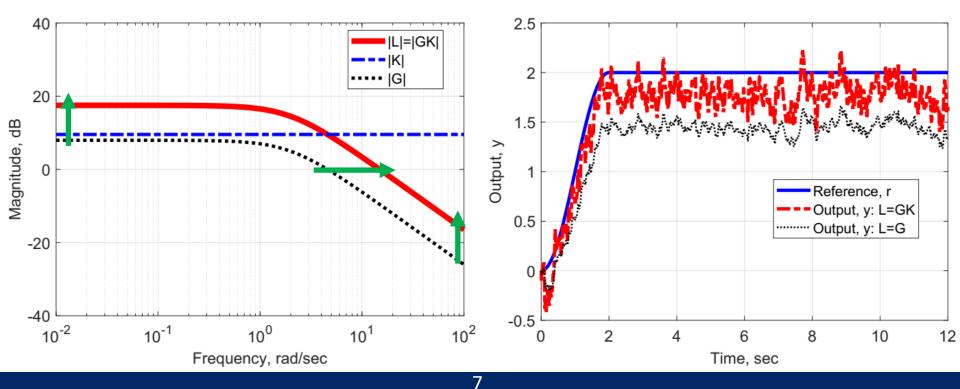
-If Kp<1 then gain shifts entire loop mag. down.

Proportional gain is used to set the loop bandwidth (crossover frequency).



Effect of Proportional Gain

Plant: $\dot{y}(t) + 2y(t) = 5u(t)$ and $G(s) = \frac{5}{s+2}$ **Control:** K(s) = 3 = 9.5dB



Integral Boost

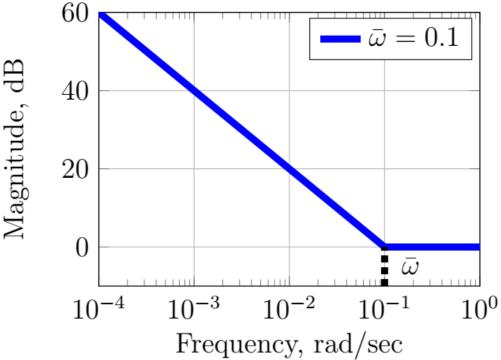
Integral Boost:
$$K(s) = \frac{s + \overline{\omega}}{s}$$

Properties:

-Corner frequency $\overline{\omega}$, high frequency gain $|K(j\omega)| = 1$, and low frequency slope of $-20 \frac{dB}{dec}$. -Corresponds to PI control:

$$\dot{u}(t) = \dot{e}(t) + \bar{\omega}e(t)$$
$$\Rightarrow u(t) = e(t) + \bar{\omega}\int_0^t e(\tau) d\tau$$

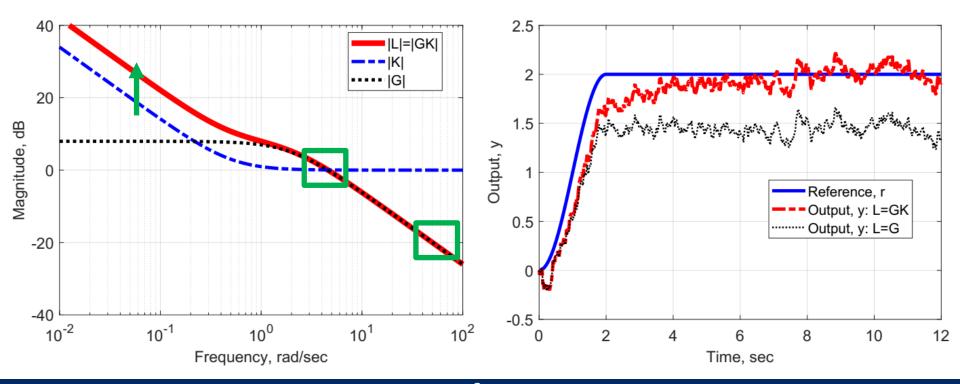
Integral boost is used to increase low frequency gain and ensure zero steady-state error.



Effect of Integral Boost

Plant: $\dot{y}(t) + 2y(t) = 5u(t)$ and $G(s) = \frac{5}{s+2}$ Control: $K(s) = \frac{s+\bar{\omega}}{s}$ with $\bar{\omega} = 3\frac{rad}{sec}$ $|K(0)| = \infty \Rightarrow |L(0)| = \infty \Rightarrow |S(0)| = \left|\frac{1}{1+L(0)}\right| = 0$

Integral control ensures zero error in steady-state



High Frequency Roll-off

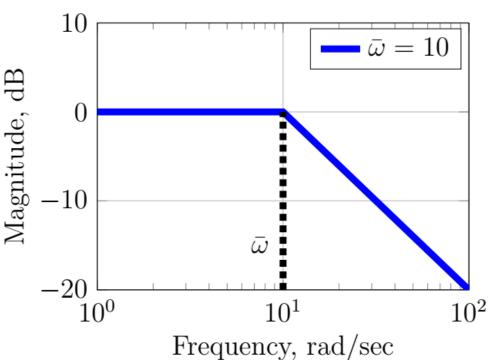
Roll-off:
$$K(s) = \frac{\overline{\omega}}{s + \overline{\omega}}$$

Properties:

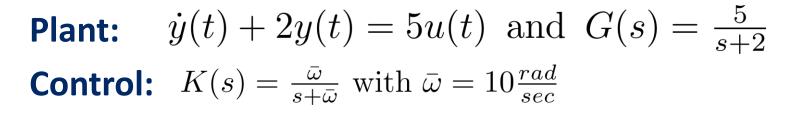
-Corner frequency $\overline{\omega}$, low frequency gain $|K(j\omega)| = 1$, and high frequency slope of $-20 \frac{dB}{dec}$. -Corresponds to the ODE:

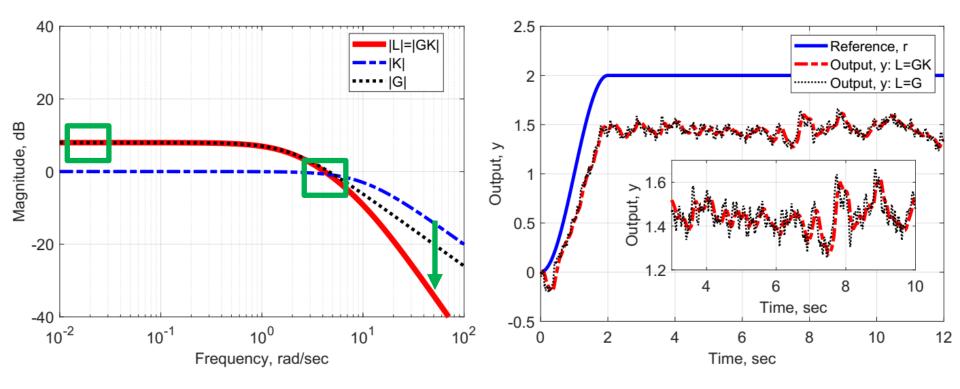
$$\dot{u}(t) + \bar{\omega}u(t) = \bar{\omega}e(t)$$

Roll-off is used to decrease high frequency gain and attenuate sensor noise.



Effect of Roll-off





Lead

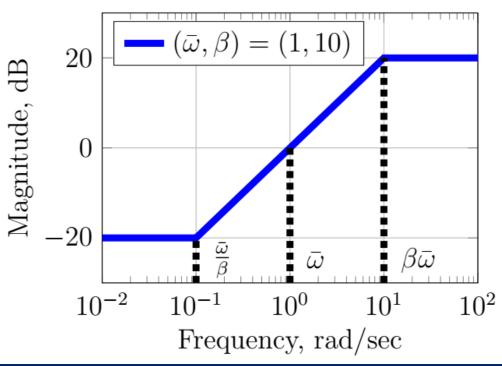
Lead: $K(s) = \frac{\beta s + \overline{\omega}}{s + \beta \overline{\omega}}$

Properties:

- -Zero at $-\frac{\overline{\omega}}{\beta}$ and pole at $-\beta \overline{\omega}$,
- -Low frequency gain $\frac{1}{\beta}$ and high frequency gain β

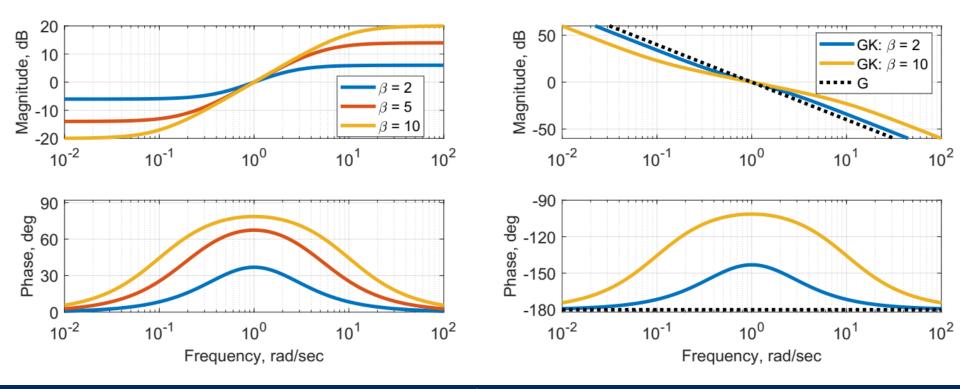
-Positive slope at $\overline{\omega}$

Lead is used to make the slope shallower and hence ensure stability and robustness.



Effect of Lead

Plant: $\ddot{y}(t) = u(t)$ and $G(s) = \frac{1}{s^2}$ **Control:** $K(s) = \frac{\beta s + \bar{\omega}}{s + \beta \bar{\omega}}$ with $\bar{\omega} = 1 \frac{rad}{sec}$



ECE 486: Control Systems

Lecture 20D: Loopshaping Design Process

Key Takeaways

The basic steps of the loopshaping process are:

- 1) Use a proportional gain to set the desired crossover frequency. This sets the bandwidth / speed of response.
- 2) Use an integral boost to increase $|L(j\omega)|$ at low frequencies. This improves the reference tracking and disturbance rejection.
- 3) Use a roll-off to reduce $|L(j\omega)|$ at high frequencies. This improves the noise rejection.
- 4) Add lead control (if needed) to modify the slope of $|L(j\omega)|$ near the crossover. This is used for closed-loop stability and robustness.
- This approach can be used on higher-order plants using controllers that are, in general, more complex than a PID controller.

Basic Design Process

Key design parameter: Desired loop crossover ω_c

1. Proportional Gain: Select $K_p = \pm \frac{1}{|G(j\omega_c)|}$

Loop $L_1 = G K_p$ has the desired crossover, $|L(j\omega_c)| = 1$.

- **2. Integral Boost:** Select $K_i(s) = \frac{s + \omega_i}{s}$ with $\omega_i \le \omega_c$
- Loop $L_2 = G K_p K_i$ has improved low frequency tracking.
- Good initial choice $\omega_i = \omega_c/3$ so that $|K_i(j\omega)| \approx 1$ for $\omega \ge \omega_c$.
- **3. Roll-off:** Select $K_r(s) = \frac{\omega_r}{s + \omega_r}$ with $\omega_r \ge \omega_c$

Loop $L_3 = G K_p K_i K_r$ has improved noise rejection / robustness. Good initial choice $\omega_r = 3\omega_c$ so that $|K_r(j\omega)| \approx 1$ for $\omega \leq \omega_c$.

4. Lead (If needed): Select $K_l(s) = \frac{\beta s + \omega_c}{s + \beta \omega_c}$ with $\beta \approx 3 - 10$

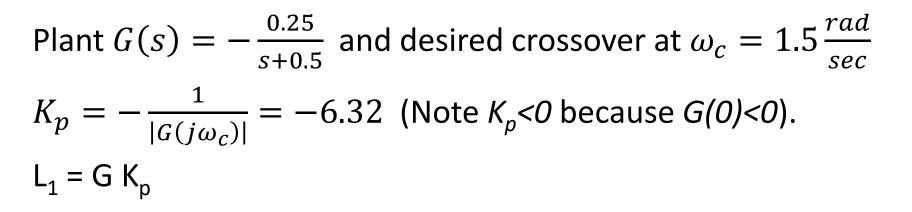
Loop $L_4 = G K_p K_i K_r K_l$ has improved stability margins

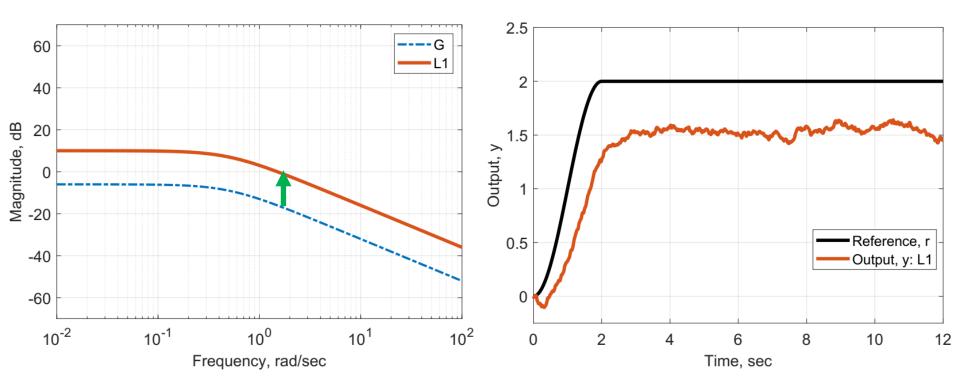
Example 1: First-Order System

Design a loopshaping controller for $G(s) = -\frac{0.25}{s+0.5}$

Desired crossover at $\omega_c = 1.5 \ rad/sec$

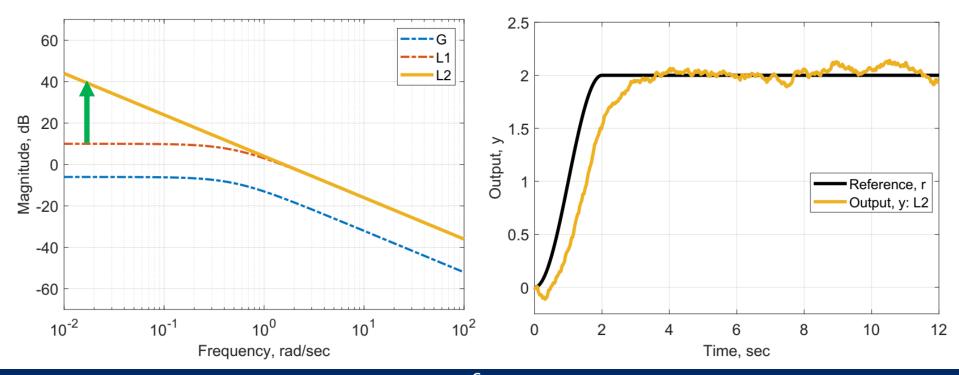
Step 1: Proportional Gain



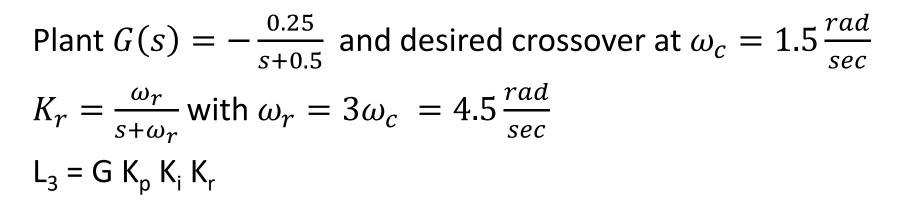


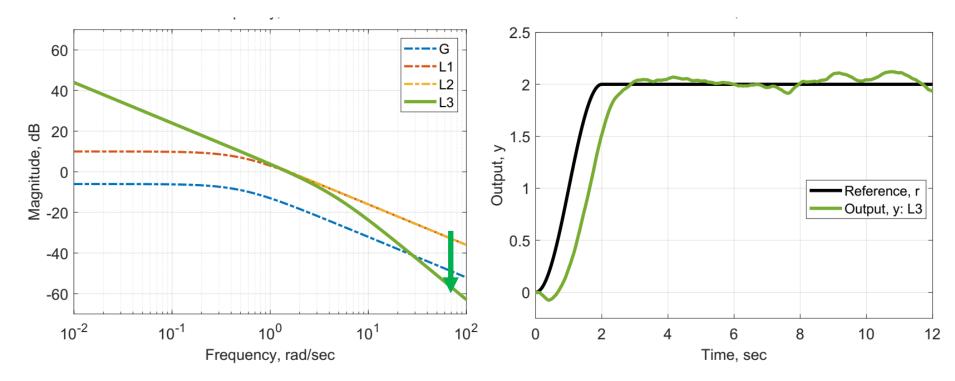
Step 2: Integral Boost

Plant
$$G(s) = -\frac{0.25}{s+0.5}$$
 and desired crossover at $\omega_c = 1.5 \frac{rad}{sec}$
 $K_i = \frac{s+\omega_i}{s}$ with $\omega_i = \frac{\omega_c}{3} = 0.5 \frac{rad}{sec}$
 $L_2 = G K_p K_i$



Step 3: Roll-off





Step 4: Lead

Plant $G(s) = -\frac{0.25}{s+0.5}$ and desired crossover at $\omega_c = 1.5 \frac{rad}{sec}$ Loop L₃ = G K_p K_i K_r has a "shallow" slope near crossover.

The closed-loop is stable with $[0,\infty)$ gain margins and $\pm 72^{\circ}$ phase margins.

No lead control is required.

Final Controller:
$$K(s) = K_p K_i(s) K_r(s) = -\frac{28.5s + 14.2}{s^2 + 4.5s}$$

$$\ddot{u}(t) + 4.5\dot{u}(t) = -28.5\dot{e}(t) - 14.2e(t)$$

Example 1: Matlab Code

>> G = -tf(0.25,[1 0.5]); % Plant >> wc = 1.5; % Desired crossover, rad/sec >> Kp = -1/abs(evalfr(G, 1j*wc)); % Proportional Gain >> wi = wc/3; % Boost frequency, rad/sec >> Ki = tf([1 wi], [1 0]); % Integral Boost >> wr = 3*wc; % Roll-off frequency, rad/sec >> Kr = tf(wr,[1 wr]); % Roll-off % Final Controller >> K = Kp*Ki*Kr; >> L3 = G*K; % Final loop

>> S = feedback(1,L3);
>> isstable(S)
>> allmargin(L3)

% Closed-loop sensitivity % Verify closed-loop stability % Classical margins

Example 2: Higher-Order System

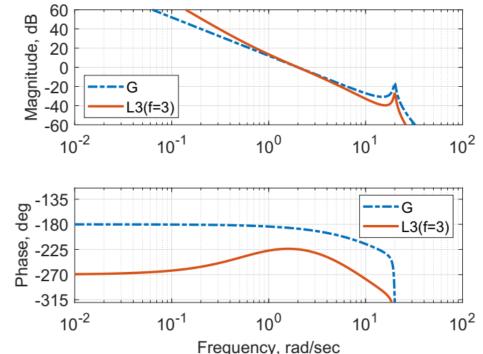
Design a loopshaping controller for $G(s) = \frac{4}{s^2} \frac{400}{s^2 + 0.08s + 400} \frac{15}{s + 15}$ Desired crossover at $\omega_c = 2.0 \ rad/sec$ Step 1) Gain: Select $K_p = \frac{1}{|G(i\omega_c)|} \approx 1$

Step 2) Boost:
$$K_i = \frac{s + \omega_i}{s}$$

with $\omega_i = \frac{\omega_c}{3}$

Step 3) Rolloff:
$$K_r = \frac{\omega_r}{s + \omega_r}$$

with $\omega_r = 3\omega_c$



Example 2: Higher-Order System

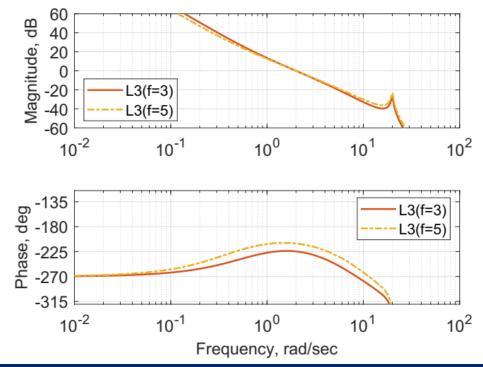
Design a loopshaping controller for $G(s) = \frac{4}{s^2} \frac{400}{s^2 + 0.08s + 400} \frac{15}{s + 15}$ Desired crossover at $\omega_c = 2.0 \ rad/sec$ Step 1) Gain: Select $K_p = \frac{1}{|G(i\omega_c)|} \approx 1$

Step 2) Boost:
$$K_i = \frac{s + \omega_i}{s}$$

with $\omega_i = \frac{\omega_c}{5}$

Step 3) Rolloff:
$$K_r = \frac{\omega_r}{s + \omega_r}$$

with $\omega_r = 5\omega_c$

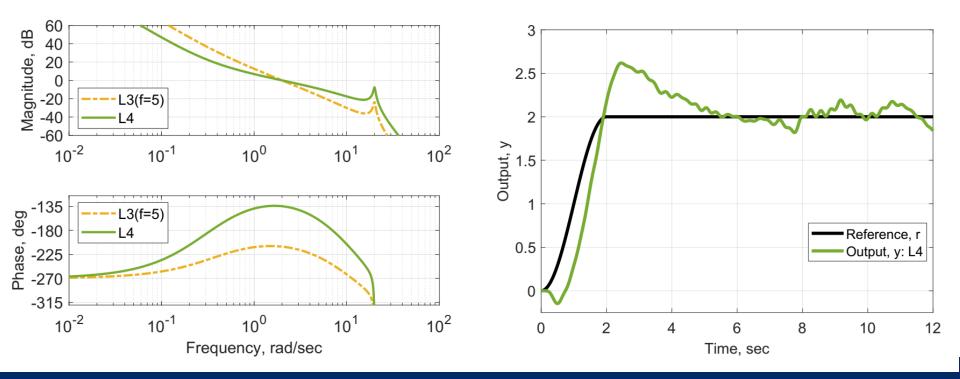


Step 4: Lead

Loop $L_3 = G K_p K_i K_r$ has a "steep" slope near crossover. Closed-loop is unstable with L_3 so lead control is needed.

$$K_l(s) = \frac{\beta s + \omega_c}{s + \beta \omega_c}$$
 with $\beta = 8$

 $L_4 = G K_p K_i K_r K_l \rightarrow Closed-loop is stable 45° of phase margin.$



Example 2: Matlab Code

>> G1 = tf(1,[1 0 0]);
>> H = 4*tf(400,[1 2*0.02*20 400])*tf(15,[1 15]);
>> G = G1*H; % Plant
>> wc = 2.0; % Desired e

```
>> Kp = 1/abs(evalfr(G, 1j*wc));
>> wi = wc/5;
>> Ki = tf([1 wi],[1 0]);
>> wr = 5*wc;
>> Kr = tf(wr,[1 wr]);
>> wl = wc;
>> beta = 8;
>> Kl = tf([beta wl],[1 beta*wl]);
>> K = Kp*Ki*Kr*Kl;
>> L4 = G*K;
```

>> S = feedback(1,L4); >> isstable(S) >> allmargin(L4) % Plant % Desired crossover, rad/sec

% Proportional Gain
% Boost frequency, rad/sec
% Integral Boost
% Roll-off frequency, rad/sec
% Roll-off
% Lead frequency, rad/sec
% Lead parameter
% Lead
% Final Controller
% Final loop

% Closed-loop sensitivity% Verify closed-loop stability% Classical margins

PID vs. Loopshaping

PID with approximate derivative:

$$K(s) = K_p + \frac{K_i}{s} + K_d \frac{\alpha s}{s + \alpha}$$
$$= \frac{(K_p + K_d \alpha)s^2 + (K_p \alpha + K_i)s + K_i \alpha}{s^2 + \alpha s}$$

Loopshaping with proportional, integral boost, and lead:

$$K(s) = K_p \cdot \frac{s + \bar{\omega}_I}{s} \cdot \frac{\beta s + \omega_c}{s + \beta \omega_c}$$
$$= \frac{(K_p \beta) s^2 + K_p (\omega_c + \beta \omega_I) s + K_p \omega_I \omega_c}{s^2 + (\beta \omega_c) s}$$

These are different parameterizations for the same class of controllers. Loopshaping can be viewed as a generalization of PID that enables

- Additional controller components (rolloff, notches, etc)
- Closer connection to frequency-domain trade-offs
- Extensions to multivariable systems.

ECE 486: Control Systems

Lecture 20E: Loopshaping Design Theorems

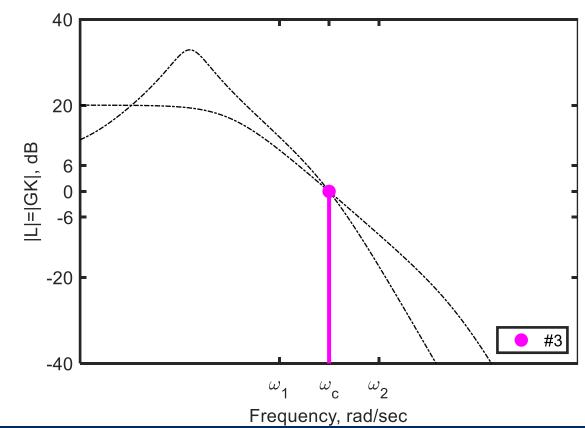
Key Takeaways

This lecture presents two important "theorems" regarding the loopshaping design process.

Under mild conditions, the loopshaping design process will yield a stable closed-loop with good stability margins.

L(s) has all poles and zeros in the LHP.
 L(0)>0

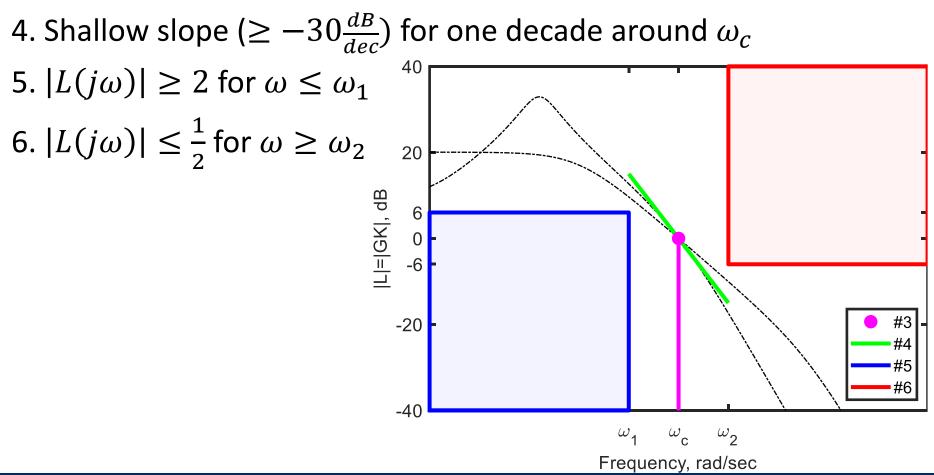
3. One crossover ω_c



- L(s) has all poles and zeros in the LHP.
 L(0)>0
- 3. One crossover ω_c
- 4. Shallow slope ($\geq -30 \frac{dB}{dec}$) for one decade around ω_c 40 20 L|=|GK|, dB 6 0 -6 -20 #3 -40 ω_2 ω_1 $\omega_{\rm c}$

- L(s) has all poles and zeros in the LHP.
 L(0)>0
- 3. One crossover ω_c
- 4. Shallow slope ($\geq -30 \frac{dB}{dec}$) for one decade around ω_c 5. $|L(j\omega)| \ge 2$ for $\omega \le \omega_1$ 20 L|=|GK|, dB 6 0 -6 -20 #3 -40 ω_2 ω_{1} $\omega_{\rm c}$ Frequency, rad/sec

- L(s) has all poles and zeros in the LHP.
 L(0)>0
- 3. One crossover ω_c



Loopshaping Design Theorem

- 1. L(s) has all poles and zeros in the LHP. 2. *L(0)>0*
- 3. One crossover ω_c

4. Shallow slope ($\geq -30 \frac{dB}{dec}$) for one decade around ω_c 5. $|L(j\omega)| \ge 2$ for $\omega \le \omega_1$ 6. $|L(j\omega)| \leq \frac{1}{2}$ for $\omega \geq \omega_2$ 20 -|=|GK|, dB 6 If L(s) satisfies 1-6 then 0 the closed-loop is stable -6 with approximate gain, -20 #3 phase, and disk margins \geq ±6dB, \geq ±45°, and

d_{min} ≥ 0.5

-40

#4

 ω_{2}

 $\omega_{\rm c}$

Frequency, rad/sec

 ω_1

Loopshaping Design Theorem With Integrators

- 1. $L(s) = \frac{1}{s^k} H(s)$ where H(s) has all poles and zeros in the LHP. 2. H(0) > 0
- 3. One crossover ω_c

