ECE 486: Control Systems

- Lecture 19A: Nyquist stability criterion for varying K

Goal: learn how to detect the presence of RHP poles of the closed-loop transfer function as the gain K is varied using frequency-response data

Reading: FPE, Chapter 6

Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$
\frac{K G(s)}{1+K G(s)}
$$

based on frequency-domain characteristics of the plant transfer function $G(s)$

Review: Nyquist Plot

Consider an arbitrary strictly proper transfer function H :

$$
H(s)=\frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{n}\right)}, \quad m<n
$$

Nyquist plot: $\operatorname{Im} H(j \omega)$ vs. $\operatorname{Re} H(j \omega)$ as ω varies from $-\infty$ to ∞

The Nyquist Stability Criterion

$$
\begin{aligned}
& \underbrace{N}_{\#(0 \text { of }-1 / K)}=\underbrace{Z}_{\# \text { (unstable CL poles) }}-\underbrace{P}_{\# \text { (unstable OL poles) }} \\
& Z=N+P \\
& Z=0 \quad \Longrightarrow N=-P
\end{aligned}
$$

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of $G(s)$ encircles the point $-1 / K P$ times counterclockwise, where P is the number of unstable (RHP) open-loop poles of $G(s)$.

Applying the Nyquist Criterion

Workflow:
Bode M and ϕ-plots $\quad \longrightarrow \quad$ Nyquist plot
Advantages of Nyquist over Routh-Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Characteristic equation:

$$
(s+1)(s+2)+K=0 \quad \Longleftrightarrow \quad s^{2}+3 s+K+2=0
$$

From Routh, we already know that the closed-loop system is stable for $K>-2$.

We will now reproduce this answer using the Nyquist criterion.

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Strategy:

- Start with the Bode plot of G
- Use the Bode plot to graph $\operatorname{Im} G(j \omega)$ vs. $\operatorname{Re} G(j \omega)$ for $0 \leq \omega<\infty$
- This gives only a portion of the entire Nyquist plot

$$
(\operatorname{Re} G(j \omega), \operatorname{Im} G(j \omega)), \quad-\infty<\omega<\infty
$$

- Symmetry:

$$
G(-j \omega)=\overline{G(j \omega)}
$$

- Nyquist plots are always symmetric w.r.t. the real axis!!

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Bode plot:

Nyquist plot:

Example: Applying the Nyquist Criterion

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Nyquist plot:

$$
\begin{aligned}
& \#(\circlearrowright \text { of }-1 / K) \\
& =\#(\text { RHP CL poles })-\underbrace{\#(\text { RHP OL poles })}_{=0}
\end{aligned}
$$

$\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

$$
\#(\circlearrowright \text { of }-1 / K)=0
$$

- If $K>0, \#(\circlearrowright$ of $-1 / K)=0$
- If $0<-1 / K<1 / 2$, $\#(\circlearrowright)$ of $-1 / K)>0 \Longrightarrow$ closed-loop stable for $K>-2$

