ECE 486: Control Systems

Lecture 18C: Nyquist Stability Condition

Key Takeaways

This lecture covers the Nyquist stability theorem.

Let L(s)=G(s)K(s) be the (open) loop transfer function.

- The value s=-1 is a critical point in the Nyquist plot.
- The closed-loop is unstable if the Nyquist curve L(j ω_0)=-1 at some frequency ω_0 .

The Nyquist stability theorem states that the closed-loop is stable if and only if the Nyquist curve of L(s) encircles the s = -1 point the "correct" number of times. The "correct" number of times is equal to the number of RHP poles of the loop L(s).

Critical -1 Point

The transfer function L(s) = G(s)K(s) is called the (open) loop transfer function.

If the Nyquist curve of L(s) passes through the critical point s = -1 then the closed-loop is unstable.

- Suppose $L(j\omega_0)=-1$ at some frequency ω_0 . Hence $1+L(j\omega_0)=0$.
- The sensitivity $S(s) = \frac{1}{1+L(s)}$ has a pole on the imaginary axis at $s=j\omega_0$.

>> G = tf(4, [1 2.0407 4]);
>> K = tf(20, [1 5]);
>> L = G*K;
>> nyquist(L);
>> S=feedback(1,L);
>> pole(S)
ans =
-7.0407 + 0.0000i
-0.0000 + 3.7687i
-0.0000 - 3.7687i
>> evalfr(L,1j*3.7687)
ans =
-1.0000 - 0.0000i
G(s) =
$$\frac{4}{s^2+2.0407s+4}$$

K(s) = $\frac{20}{s+5}$
Nyquist Diagram
-5-2 -1 0 Real Axis
Real Axis

Nyquist Theorem

Notation:

- P_{CL} : Number of poles of the closed-loop in the CRHP.
- P_{OL} : Number of poles of the open-loop L(s) in the CRHP.
- N_{CCW}: This denotes the number of times the Nyquist curve of L(s) encircles the critical –1 point. N_{CCW}>0 for counterclockwise (CCW) encirclements and N_{CCW}<0 for clockwise (CW) encirclements.

Nyquist Theorem: Assume L(s)=G(s)K(s) has no pole/zero cancellations in the CRHP and no poles on the imaginary axis. Then

$$P_{CL} = P_{OL} - N_{CCW.}$$

The closed-loop is stable ($P_{CL} = 0$) if and only if $N_{CCW} = P_{OL}$.

Benefit: Closed-loop stability can be determined from a Nyquist plot of the open loop transfer function L(s).

Nyquist Theorem

The Nyquist theorem follows from Cauchy's Argument Principle.

- Consider the curve Γ given by Γ_R as $R \to \infty$. This encloses the RHP and L(Γ) is the Nyquist plot of L(s).
- Define H(s)=1+L(s). $H(\Gamma)$ encircles the origin N_z-N_p times CW.
- The Nyquist plot L(Γ) encircles the -1 point $N_{CCW} = N_p N_z$ times CCW.
- RHP zeros of H(s) are the RHP poles of closed-loop: $N_z = P_{CL}$.
- RHP poles of H(s) are the RHP poles of L(s): $N_p = P_{OL}$.

Combining these facts:

$$P_{CL} = P_{OL} - N_{CCW.}$$

The theorem can be extended if L(s) has a pole on the imaginary axis.

$$\operatorname{Loop} L_1(s) = \frac{2}{s+4}$$

- $P_{OL} = 0$ $N_{CCW} = 0$

$$\rightarrow P_{CL} = P_{OL} - N_{CCW.} = 0.$$

Closed-loop is stable.

Verify:

$$S_1(s) = \frac{1}{1 + L_1(s)}$$
$$= \frac{1}{1 + \frac{2}{s+4}} = \frac{s+4}{s+6}$$

Loop
$$L_2(s) = \frac{-2s+2}{s+4}$$

- *P*_{OL} = 0
 *N*_{CCW} = -1

$$\rightarrow P_{CL} = P_{OL} - N_{CCW.} = +1.$$

Closed-loop is unstable.

Verify:

$$S_2(s) = \frac{1}{1 + L_2(s)}$$
$$= \frac{1}{1 + \frac{-2s+2}{s+4}} = \frac{s+4}{-s+6}$$

$$\operatorname{Loop} L_3(s) = \frac{2}{s-4}$$

- $P_{OL} = 1$
- $N_{CCW} = 0$
- $\rightarrow P_{CL} = P_{OL} N_{CCW.} = +1.$ Closed-loop is unstable.

Verify:

$$S_3(s) = \frac{1}{1 + L_3(s)}$$
$$= \frac{1}{1 + \frac{2}{s-4}} = \frac{s-4}{s-2}$$

Loop
$$L_4(s) = \frac{8}{s-4}$$

• $P_{OL} = 1$
• $N_{CCW} = 1$
 $\rightarrow P_{CL} = P_{OL} - N_{CCW.} = 0.$
Closed-loop is stable.
Verify:
 $S_4(s) = \frac{1}{1 + L_4(s)}$

1

1 +

 $\frac{8}{s-4}$

s-4

s+4

Loop
$$L_5(s) = \frac{2}{s-5} \frac{100}{s^2+5s+100}$$

- *P*_{OL} = 1 *N*_{CCW} = 1

$$\rightarrow P_{CL} = P_{OL} - N_{CCW.} = 0.$$

Closed-loop is stable.

