Goal: learn to read off gain and phase margins of the closed-loop system from the Bode plot of the open-loop transfer function

Reading: FPE, Section 6.1
Crossover Frequency and Stability

Definition: The frequency at which $M = 1$ is called the *crossover frequency* and denoted by ω_c.

Transition from stability to instability on the Bode plot:

For critical K, $\angle G(j\omega_c) = 180^\circ$
Stability from Frequency Response

Consider this unity feedback configuration:

$$G(s) Y + R K$$

Suppose that the closed-loop system, with transfer function

$$\frac{K G(s)}{1 + K G(s)}$$

is stable for a given value of K.

Question: Can we use the Bode plot to determine how far from instability we are?

Two important characteristics: gain margin (GM) and phase margin (PM).
What happens as we vary K?

- ϕ independent of $K \implies$ only the M-plot changes
- If we multiply K by 2:
 \[
 \log(2M) = \log 2 + \log M
 \]
 - M-plot shifts up by $\log 2$
- If we divide K by 2:
 \[
 \log\left(\frac{1}{2}M\right) = \log \frac{1}{2} + \log M
 = -\log 2 + \log M
 \]
 - M-plot shifts down by $\log 2$

Changing the value of K moves the crossover frequency ω_c!!
Gain Margin

Back to our example: \[G(s) = \frac{1}{s(s^2 + 2s + 2)}, \quad K = 2 \text{ (stable)} \]

Gain margin (GM) is the factor by which \(K \) can be multiplied before we get \(M = 1 \) when \(\phi = 180^\circ \)

Since varying \(K \) doesn’t change \(\omega_{180^\circ} \), to find GM we need to inspect \(M \) at \(\omega = \omega_{180^\circ} \)
Gain Margin

Our example: \[G(s) = \frac{1}{s(s^2 + 2s + 2)}, \quad K = 2 \text{ (stable)} \]

Gain margin (GM) is the factor by which \(K \) can be multiplied before we get \(M = 1 \) when \(\phi = 180^\circ \)

Since varying \(K \) doesn’t change \(\omega_{180^\circ} \), to find GM we need to inspect \(M \) at \(\omega = \omega_{180^\circ} \)

In this example:

At \(\omega_{180^\circ} = \sqrt{2} \)
\[M = 0.5 (-6 \text{ dB}), \]
so \(\text{GM} = 2 \)
Phase Margin

Our example: \[G(s) = \frac{1}{s(s^2 + 2s + 2)}, \quad K = 2 \text{ (stable)} \]

\[\phi = -148^\circ \]

Phase margin (PM) is the amount by which the phase at the crossover frequency \(\omega_c \) differs from \(180^\circ \) mod \(360^\circ \).

To find PM, we need to inspect \(\phi \) at \(\omega = \omega_c \)

In this example:

\[\phi = -148^\circ, \]

so \(PM = (-148^\circ) - (-180^\circ) = 32^\circ \)

(in practice, want \(PM \geq 30^\circ \))
Example

\[G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s} \quad \zeta, \omega_n > 0 \]

Consider gain \(K = 1 \), which gives closed-loop transfer function

\[
\frac{KG(s)}{1 + KG(s)} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s} \quad \frac{\omega_n^2}{1 + \omega_n^2} \quad \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \quad \text{— prototype 2nd-order response}
\]

Question: what is the gain margin at \(K = 1 \)?

Answer: \(GM = \infty \)
Example

\[G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta \omega_n} + 1\right)} \]

Let’s look at the phase plot:

- starts at \(-90^\circ\) (Type 1 term with \(n = -1\))
- goes down by \(90^\circ\) (Type 2 pole)

Recall: to find GM, we first need to find \(\omega_{180^\circ}\), and here there is no such \(\omega \implies\) no GM.
Example

So, at \(K = 1 \), the gain margin of

\[
G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s} = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}
\]

is equal to \(\infty \) — what does that mean?

It means that we can keep on increasing \(K \) indefinitely without ever encountering instability.

What about phase margin?
Example: Phase Margin

\[G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta \omega_n} + 1\right)} \]

Let’s look at the magnitude plot:

- low-frequency asymptote slope \(-1\) (Type 1 term, \(n = -1\))
- slope down by 1 past the breakpoint. \(\omega = 2\zeta \omega_n\) (Type 2 pole)

\[\Rightarrow \text{there is a finite crossover frequency } \omega_c \]
Example 2: Magnitude Plot

\[G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta \omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta \omega_n} + 1\right)} \]

It can be shown that, for this system,

\[PM \bigg|_{K=1} = \tan^{-1} \left(\frac{2\zeta}{\sqrt{\sqrt{4\zeta^4 + 1} - 2\zeta^2}} \right) \]

— for PM < 70°, a good approximation is \(PM \approx 100 \cdot \zeta \)
Phase Margin for 2nd-Order System

\[G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)} \]

\[\text{PM} \bigg|_{K=1} = \tan^{-1} \left(\frac{2\zeta}{\sqrt{\sqrt{4\zeta^4 + 1 - 2\zeta^2}}} \right) \approx 100 \cdot \zeta \]

Conclusions:

larger PM \iff better damping

(open-loop quantity) \iff (closed-loop characteristic)

Thus, the overshoot \(M_p = \exp \left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}} \right) \) and resonant peak \(M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1 \) are both related to PM through \(\zeta \)!!
In the next lecture, we will see the following more generally:

Bode’s Gain-Phase Relationship: all important characteristics of the closed-loop time response can be related to the phase margin of the open-loop transfer function!!

In fact, we will use a quantitative statement of this relationship as a design guideline.