ECE 486: Control Systems

Lecture 16A: Sensitivity Functions

Key Takeaways

This lectures considers a generic feedback system with plant G(s) and controller K(s).

Two important transfer functions are:

- Sensitivity: $S(s) = \frac{1}{1+G(s)K(s)}$
- Complementary Sensitivity: $T(s) = \frac{G(s)K(s)}{1+G(s)K(s)}$

The feedback system is defined to be stable if every possible input/output transfer function is internally stable.

- This holds if and only if all zeros of 1+G(s)K(s) are in the LHP.
- The feedback system is unstable if the G(s)K(s) has a pole/zero cancellation in the CRHP.

Problem 1

Consider the feedback system below.

- A) What is the transfer function from disturbance *d* to output *y*? Express your answer in terms of *G*(*s*) and *K*(*s*).
- B) Is the feedback system stable if $G(s) = \frac{1}{s-2}$ and K(s) = 5?
- C) Is the feedback system stable if $G(s) = \frac{s-1}{s+2}$ and $K(s) = \frac{5}{s-1}$?

Solution 1A

A) What is the transfer function from disturbance *d* to output *y*? Express your answer in terms of *G*(*s*) and *K*(*s*).

Solution 1B

B) Is the feedback system stable if $G(s) = \frac{1}{s-2}$ and K(s) = 5?

Solution 1C

C) Is the feedback system stable if $G(s) = \frac{s-1}{s+2}$ and $K(s) = \frac{5}{s-1}$?

Solution 1-Extra Space

ECE 486: Control Systems

Lecture 16B: Gain Margin

Key Takeaways

This lecture discusses one safety factor called the gain margin to account for model uncertainty.

- The gain margin is the amount of allowable variation in the gain of the plant before the closed-loop becomes unstable.
- As a rule of thumb, the closed-loop should remain stable for gain variations in the range [0.5, 2] (= ±6dB).

It is shown that a gain variation $g_0>0$ causes a closed-loop pole at $s = \pm j\omega_0$ if and only if $L(j\omega_0) = -1/g_0$

This can be used to determine gain margins from a Bode plot of the loop transfer function L(s).

Problem 2

Consider a standard closed-loop system with the loop transfer function L(s) with Bode plot below. Assume the closed-loop is stable with the loop L(s).

Solution 2A and 2B

A) What is the phase crossover frequency, ω_0 ? B) What is the gain margin, g_0 , of the closed-loop?

Solution 2C and 2D

C) Is the closed-loop stable if the open-loop transfer function is 1.5L(s)? D) Use Matlab to verify that if the loop is $g_0L(s)$ then the closed-loop has a pole at j ω_0 . $L(s) = \frac{-4s+72}{0.39s^2+8.02s+18}$

Solution 2-Extra Space

ECE 486: Control Systems

Lecture 16C: Phase Margin

Key Takeaways

This lecture discusses another safety factor called the phase margin to account for model uncertainty and time delays.

- The phase margin is the amount of allowable variation in the phase of the plant before the closed-loop becomes unstable.
- As a rule of thumb, the closed-loop should remain stable for phase variations in the range ±45°.

It is shown that a phase variation $\theta_0 > 0$ causes a closed-loop pole at $s = j\omega_0$ if and only if $e^{-j\theta_0}L(j\omega_0) = -1$.

This can be used to determine phase margins from a Bode plot of the loop transfer function *L(s)*.

Problem 3

Consider a standard closed-loop system with the loop transfer function L(s) with Bode plot below. Assume the closed-loop is stable with the loop L(s).

A) What is the gain crossover frequency, ω_0 ?

B) What is the phase margin, θ_0 , of the closed-loop?

C) Use Matlab to verify that if the loop is $e^{-j\theta_0}L(s)$ then the closed-loop has a pole at $j\omega_0$.

Solution 3A and 3B

A) What is the gain crossover frequency, ω_0 ? B) What is the phase margin, θ_0 , of the closed-loop?

Solution 3C

C) Use Matlab to verify that if the loop is $e^{-j\theta_0}L(s)$ then the closed-loop has a pole at $j\omega_0$.

Solution 3-Extra Space