ECE 486: Control Systems

- Lecture 15: Bode plots for three types of transfer functions and general LTI systems

Goal: learn to analyze and sketch magnitude and phase plots of transfer functions written in Bode form (arbitrary products of three types of factors).

Reading: FPE, Section 6.1

Review: Scale Convention for Bode Plots

	magnitude	phase
horizontal scale	\log	\log
vertical scale	\log	linear

Advantage of the scale convention: we will learn to do Bode plots by starting from simple factors and then building up to general transfer functions by considering products of these simple factors.

Preview: Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

We can state this succinctly as follows:
Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode Form of the Transfer Function

Bode form of $K G(s)$ is a factored form with the constant term in each factor equal to 1 , i.e., lump all DC gains into one number in the front.

Example:

$$
\begin{array}{r}
\qquad K G(s)=K \frac{s+3}{s\left(s^{2}+2 s+4\right)} \\
\text { rewrite as }\left.\frac{3 K\left(\frac{s}{3}+1\right)}{4 s\left(\left(\frac{s}{2}\right)^{2}+\frac{s}{2}+1\right)}\right|_{s=j \omega} \\
=\underbrace{\frac{3 K}{4}}_{=K_{0}} \frac{\frac{j \omega}{3}+1}{j \omega\left(\left(\frac{j \omega}{2}\right)^{2}+\frac{j \omega}{2}+1\right)}
\end{array}
$$

Three Types of Factors

Transfer functions in Bode form will have three types of factors:

1. $K_{0}(j \omega)^{n}$, where n is a positive or negative integer
2. $(j \omega \tau+1)^{ \pm 1}$
3. $\left[\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1\right]^{ \pm 1}$

In our example above,

$$
\begin{aligned}
K G(j \omega) & =\frac{3 K}{4} \frac{\frac{j \omega}{3}+1}{j \omega\left[\left(\frac{j \omega}{2}\right)^{2}+\frac{j \omega}{2}+1\right]} \\
& =\underbrace{\frac{3 K}{4}(j \omega)^{-1}}_{\text {Type } 1} \cdot \underbrace{\left(\frac{j \omega}{3}+1\right)}_{\text {Type } 2} \cdot \underbrace{\left[\left(\frac{j \omega}{2}\right)^{2}+\frac{j \omega}{2}+1\right]^{-1}}_{\text {Type } 3}
\end{aligned}
$$

Now let's discuss Bode plots for factors of each type.

Type 1: $K_{0}(j \omega)^{n}$

Magnitude: $\log M=\log \left|K_{0}(j \omega)^{n}\right|=\log \left|K_{0}\right|+n \log \omega$

- as a function of $\log \omega$, this is a line of slope n passing through the value $\log \left|K_{0}\right|$ at $\omega=1$
In our example, we had $K_{0}(j \omega)^{-1}$:

— this is called a low-frequency asymptote (will see why later)

Type 1: $K_{0}(j \omega)^{n}$

Phase: $\angle K_{0}(j \omega)^{n}=\angle(j \omega)^{n}=n \angle j \omega=n \cdot 90^{\circ}$

- this is a constant, independent of ω.

In our example, we had $K_{0}(j \omega)^{-1}$:

- here, the phase is -90° for all ω.

Type 2: $j \omega \tau+1$

Magnitude plot:

For a stable real zero, the magnitude slope "steps up by 1 " at the break-point.

Type 2: $j \omega \tau+1$

Phase plot:

For a stable real zero, the phase "steps up by 90° " as we go past the break-point.

Type 2: $(j \omega \tau+1)^{-1}$

This is a stable real pole.
Magnitude:

$$
\log \left|\frac{1}{j \omega \tau+1}\right|=-\log |j \omega \tau+1|
$$

Phase:

$$
\angle \frac{1}{j \omega \tau+1}=-\angle(j \omega \tau+1)
$$

So the magnitude and phase plots for a stable real pole are the reflections of the corresponding plots for the stable real zero w.r.t. the horizontal axis:

- step down by 1 in magnitude slope
- step down by 90° in phase

Example: Type 1 and Type 2 Factors

$$
K G(s)=\frac{2000(s+0.5)}{s(s+10)(s+50)}
$$

Convert to Bode form:

$$
\begin{aligned}
K G(j \omega) & =\frac{2000 \cdot 0.5 \cdot\left(\frac{j \omega}{0.5}+1\right)}{10 \cdot 50 \cdot j \omega\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& =\frac{2}{j \omega} \cdot\left(\frac{j \omega}{0.5}+1\right) \cdot \frac{1}{\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)}
\end{aligned}
$$

Example 1: Magnitude

Transfer function in Bode form:

$$
K G(j \omega)=\frac{2}{j \omega} \cdot\left(\frac{j \omega}{0.5}+1\right) \cdot \frac{1}{\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)}
$$

Type 1 term:

- $K_{0}=2, n=-1$ - it contributes a line of slope -1 passing through the point $(\omega=1, M=2)$.
- This is a low-frequency asymptote: for small ω, it gives very large values of M, while other terms for small ω are close to $M=1($ since $\log 1=0)$.
Now we mark the break-points, from Type 2 terms:
- $\omega=0.5$ stable zero \Rightarrow slope steps up by 1
- $\omega=10 \quad$ stable pole \Rightarrow slope steps down by 1
- $\omega=50 \quad$ stable pole \Rightarrow slope steps down by 1

Example 1: Magnitude Plot

$$
K G(j \omega)=\frac{2}{j \omega} \cdot\left(\frac{j \omega}{0.5}+1\right) \cdot \frac{1}{\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)}
$$

Example 1: Phase

Transfer function in Bode form:

$$
K G(j \omega)=\frac{2}{j \omega} \cdot\left(\frac{j \omega}{0.5}+1\right) \cdot \frac{1}{\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)}
$$

Type 1 term:

- $n=-1$ - phase starts at -90°

Type 2 terms:

- $\omega=0.5$ stable zero \Rightarrow phase up by 90° (by 45° at $\omega=0.5$)
- $\omega=10$ stable pole \Rightarrow phase down by 90° (by 45° at $\omega=10$)
- $\omega=50$ stable pole \Rightarrow phase down by 90° (by 45° at $\omega=50$)

Example 1: Phase Plot

$$
K G(j \omega)=\frac{2}{j \omega} \cdot\left(\frac{j \omega}{0.5}+1\right) \cdot \frac{1}{\left(\frac{j \omega}{10}+1\right)\left(\frac{j \omega}{50}+1\right)}
$$

Type $3:\left[\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1\right]^{-1}$
This is a stable complex pole.
Magnitude:
$\log M=\log \left|\frac{1}{\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1}\right|=-\log \left|\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1\right|$

Phase:

$$
\phi=\angle \frac{1}{\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1}=-\angle\left[\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1\right]
$$

Type 3: Magnitude, Complex Pole Case

How does the magnitude plot look? Depends on the value of ζ :

The magnitude hits its peak value (for $\zeta<1 / \sqrt{2} \approx 0.707$) at

$$
\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}<\omega_{n}
$$

Type 3: Magnitude

For small enough ζ (below $1 / \sqrt{2}$), the magnitude of

$$
\frac{1}{\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1}
$$

has a resonant peak at the resonant frequency

$$
\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}
$$

Likewise, the magnitude of

$$
\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1
$$

has a resonant dip at ω_{r}.

Type 3 Zero: Magnitude

For a stable real zero, the magnitude slope "steps up by 2 " at the break-point.

Type 3 Pole: Magnitude

For a stable real pole, the magnitude slope "steps down by 2 " at the break-point.

Type 3: $\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1$, Phase
Take a look at the real and imaginary parts of $\left(\frac{j \omega}{\omega_{n}}\right)^{2}+2 \zeta \frac{j \omega}{\omega_{n}}+1$

$$
\begin{aligned}
& (R(\omega), I(\omega)) \\
& =\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}, 2 \zeta \frac{\omega}{\omega_{n}}\right)
\end{aligned}
$$

Phase:

- for $\omega \ll \omega_{n}, \phi \approx 0^{\circ}$ (real and positive)
- for $\omega=\omega_{n}, \phi=90^{\circ}(\operatorname{Re}=0, \operatorname{Im}>0)$
- for $\omega \gg \omega_{n}, \phi \approx 180^{\circ}\left(\operatorname{Re} \sim-\omega^{2}, \operatorname{Im} \sim \omega\right)$

For a stable complex zero, the phase steps up by 180° as we go through the breakpoint; as $\zeta \rightarrow 0$, the transition through the break-point gets sharper, almost step-like.

For a pole, the phase is multiplied by -1 .

Type 3: Phase

(stable complex pole - phase steps down by 180°)

Example 2

$$
K G(s)=\frac{0.01\left(s^{2}+0.01 s+1\right)}{s^{2}\left(\frac{s^{2}}{4}+0.02 \frac{s}{2}+1\right)}
$$

- already in Bode form

What can we tell about magnitude?

- low-frequency term $\frac{0.01}{(j \omega)^{2}}$ with $K_{0}=0.01, n=-2$
- asymptote has slope $=-2$, passes through ($\omega=1, M=0.01$)
- complex zero with break-point at $\omega_{n}=1$ and $\zeta=0.005$ slope up by 2 ; large resonant dip
- complex pole with break-point at $\omega_{n}=2$ and $\zeta=0.01$ slope down by 2 ; large resonant peak

Example 2: Magnitude Plot

Example 2

$$
K G(s)=\frac{0.01\left(s^{2}+0.01 s+1\right)}{s^{2}\left(\frac{s^{2}}{4}+0.02 \frac{s}{2}+1\right)}
$$

What can we tell about phase?

- low-frequency term $\frac{0.01}{(j \omega)^{2}}$ with $K_{0}=0.01, n=-2$ - phase starts at $n \times 90^{\circ}=-180^{\circ}$
- complex zero with break-point at $\omega_{n}=1$ - phase up by 180°
\rightarrow complex pole with break-point at $\omega_{n}=2$ - phase down by 180°
- since ζ is small for both pole and zero, the transitions are very sharp

Example 2: Phase Plot

Unstable Zeros/Poles?

So far, we've only looked at transfer functions with stable poles and zeros (except perhaps at the origin). What about RHP?

Example: consider two transfer functions,

$$
G_{1}(s)=\frac{s+1}{s+5} \quad \text { and } \quad G_{2}(s)=\frac{s-1}{s+5}
$$

Note:

- G_{1} has stable poles and zeros; G_{2} has a RHP zero.
- Magnitude plots of G_{1} and G_{2} are the same -

$$
\begin{aligned}
& \left|G_{1}(j \omega)\right|=\left|\frac{j \omega+1}{j \omega+5}\right|=\sqrt{\frac{\omega^{2}+1}{\omega^{2}+5}} \\
& \left|G_{2}(j \omega)\right|=\left|\frac{j \omega-1}{j \omega+5}\right|=\sqrt{\frac{\omega^{2}+1}{\omega^{2}+5}}
\end{aligned}
$$

- All the difference is in the phase plots!

Phase Plot for G_{1}

$$
G_{1}(j \omega)=\frac{j \omega+1}{j \omega+5}=\frac{1}{5} \frac{j \omega+1}{\frac{j \omega}{5}+1}
$$

- Low-frequency term: $\frac{1}{5}(j \omega)^{0}-n=0$, so phase starts at 0°
- Break-points at $\omega_{n}=1$ (phase goes up by 90°) and at $\omega_{n}=5$ (phase goes down by 90°)

Phase Plot for G_{2}

$$
G_{2}(j \omega)=\frac{j \omega-1}{j \omega+5}=\frac{1}{5} \frac{j \omega-1}{\frac{j \omega}{5}+1}
$$

New type of behavior -

- $\omega \approx 0: \phi \approx 180^{\circ}$ (real and negative)
- $\omega \gg 1: \quad \phi \approx 90^{\circ}(\operatorname{Re}=-1, \operatorname{Im}=\omega \gg 1)$
- $\omega \approx 1: \phi \approx 135^{\circ}$

For a RHP zero, the phase starts out at 180° and goes down by 90° through the break-point (135° at break-point).

Phase Plot for G_{2}

For a RHP zero, the phase plot is similar to what we had for a LHP pole: goes down by $90^{\circ} \ldots$ However, it starts at 180°, and not at 0°.

Minimum-Phase and Nonminimum-Phase Zeros

Among all transfer functions with the same magnitude plot, the one with only LHP zeros has the minimal net phase change as ω goes from 0 to ∞ - hence the term minimum-phase for LHP zeros.

Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

We can state this succinctly as follows:
Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

