ECE 486: Control Systems

 Lecture 15: Bode plots for three types of transfer functions and general LTI systems

*Goal:* learn to analyze and sketch magnitude and phase plots of transfer functions written in Bode form (arbitrary products of three types of factors).

*Reading:* FPE, Section 6.1

# Review: Scale Convention for Bode Plots

|                  | magnitude | phase  |
|------------------|-----------|--------|
| horizontal scale | log       | log    |
| vertical scale   | log       | linear |

Advantage of the scale convention: we will learn to do Bode plots by starting from simple factors and then building up to general transfer functions by considering products of these simple factors. Preview: Bode's Gain-Phase Relationship



Assuming that G(s) is *minimum-phase* (i.e., has no RHP zeros), we derived the following for the Bode plot of KG(s):

|            | low freq.             | real zero/pole          | complex zero/pole        |
|------------|-----------------------|-------------------------|--------------------------|
| mag. slope | n                     | up/down by 1            | up/down by $2$           |
| phase      | $n \times 90^{\circ}$ | up/down by $90^{\circ}$ | up/down by $180^{\circ}$ |

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase  $\approx$  Magnitude Slope  $\times 90^{\circ}$ 

Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term in each factor equal to 1, i.e., lump all DC gains into one number in the front.

Example:



## Three Types of Factors

Transfer functions in Bode form will have three types of factors:

1.  $K_0(j\omega)^n$ , where n is a positive or negative integer

2. 
$$(j\omega\tau + 1)^{\pm 1}$$
  
3.  $\left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1\right]^{\pm 1}$ 

In our example above,

$$KG(j\omega) = \frac{3K}{4} \frac{\frac{j\omega}{3} + 1}{j\omega \left[ \left(\frac{j\omega}{2}\right)^2 + \frac{j\omega}{2} + 1 \right]}$$
$$= \underbrace{\frac{3K}{4} (j\omega)^{-1}}_{\text{Type 1}} \cdot \underbrace{\left(\frac{j\omega}{3} + 1\right)}_{\text{Type 2}} \cdot \underbrace{\left[ \left(\frac{j\omega}{2}\right)^2 + \frac{j\omega}{2} + 1 \right]^{-1}}_{\text{Type 3}}$$

Now let's discuss Bode plots for factors of each type.

Type 1:  $K_0(j\omega)^n$ 

Magnitude:  $\log M = \log |K_0(j\omega)^n| = \log |K_0| + n \log \omega$ 

— as a function of  $\log \omega$ , this is a *line* of slope *n* passing through the value  $\log |K_0|$  at  $\omega = 1$ 

In our example, we had  $K_0(j\omega)^{-1}$ :



— this is called a low-frequency asymptote (will see why later)

Type 1:  $K_0(j\omega)^n$ 

Phase:  $\angle K_0(j\omega)^n = \angle (j\omega)^n = n \angle j\omega = n \cdot 90^\circ$ — this is a constant, independent of  $\omega$ .

In our example, we had  $K_0(j\omega)^{-1}$ :



— here, the phase is  $-90^{\circ}$  for all  $\omega$ .

# Type 2: $j\omega\tau + 1$

#### Magnitude plot:



For a stable real zero, the magnitude slope "steps up by 1" at the break-point.

# Type 2: $j\omega\tau + 1$

Phase plot:



For a stable real zero, the phase "steps up by  $90^\circ$  " as we go past the break-point.

Type 2: 
$$(j\omega \tau + 1)^{-1}$$

This is a stable real pole.

Magnitude:

$$\log\left|\frac{1}{j\omega\tau+1}\right| = -\log|j\omega\tau+1|$$

Phase:

$$\angle \frac{1}{j\omega\tau + 1} = -\angle (j\omega\tau + 1)$$

So the magnitude and phase plots for a stable real pole are the reflections of the corresponding plots for the stable real zero w.r.t. the horizontal axis:

- ▶ step down by 1 in magnitude slope
- ▶ step down by  $90^{\circ}$  in phase

Example: Type 1 and Type 2 Factors

$$KG(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$

Convert to Bode form:

$$KG(j\omega) = \frac{2000 \cdot 0.5 \cdot \left(\frac{j\omega}{0.5} + 1\right)}{10 \cdot 50 \cdot j\omega \left(\frac{j\omega}{10} + 1\right) \left(\frac{j\omega}{50} + 1\right)}$$
$$= \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right) \left(\frac{j\omega}{50} + 1\right)}$$

# Example 1: Magnitude

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

- ►  $K_0 = 2, n = -1$  it contributes a line of slope -1 passing through the point ( $\omega = 1, M = 2$ ).
- ► This is a low-frequency asymptote: for small  $\omega$ , it gives very large values of M, while other terms for small  $\omega$  are close to M = 1 (since log 1 = 0).

Now we mark the break-points, from Type 2 terms:

• 
$$\omega = 0.5$$
 stable zero  $\Rightarrow$  slope steps up by 1

- $\omega = 10$  stable pole  $\Rightarrow$  slope steps down by 1
- $\omega = 50$  stable pole  $\Rightarrow$  slope steps down by 1

Example 1: Magnitude Plot

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$



## Example 1: Phase

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

▶ 
$$n = -1$$
 — phase starts at  $-90^{\circ}$ 

Type 2 terms:

• 
$$\omega = 0.5$$
 stable zero  $\Rightarrow$  phase up by 90° (by 45° at  $\omega = 0.5$ )

▶  $\omega = 10$  stable pole ⇒ phase down by 90° (by 45° at  $\omega = 10$ )

►  $\omega = 50$  stable pole  $\Rightarrow$  phase down by 90° (by 45° at  $\omega = 50$ )

Example 1: Phase Plot

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$



Type 3: 
$$\left[ \left( \frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{-1}$$

#### This is a stable complex pole.

Magnitude:

$$\log M = \log \left| \frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1} \right| = -\log \left| \left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right|$$

Phase:

$$\phi = \angle \frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1} = -\angle \left[ \left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]$$

## Type 3: Magnitude, Complex Pole Case

How does the magnitude plot look? Depends on the value of  $\zeta$ :  $M(\omega)$ 1.0  $- \zeta = 1/2$  $- \zeta = 1/\sqrt{2}$ 0.8 0.6 ζ=1 0.4 0.2 ω 0.5 1.0 1.5 2.0 2.5  $3.0 \omega_n$ 

The magnitude hits its peak value (for  $\zeta < 1/\sqrt{2} \approx 0.707$ ) at

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} < \omega_n$$

## Type 3: Magnitude

For small enough  $\zeta$  (below  $1/\sqrt{2}$ ), the magnitude of

$$\frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1}$$

has a resonant peak at the resonant frequency

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}.$$

Likewise, the magnitude of

$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$$

has a resonant dip at  $\omega_r$ .

# Type 3 Zero: Magnitude



For a stable real zero, the magnitude slope "steps up by 2" at the break-point.

# Type 3 Pole: Magnitude



For a stable real pole, the magnitude slope "steps down by 2" at the break-point.

Type 3: 
$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$$
, Phase

Take a look at the real and imaginary parts of  $\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$ 

$$\begin{aligned} &(R(\omega), I(\omega)) \\ &= \left(1 - \left(\frac{\omega}{\omega_n}\right)^2, 2\zeta \frac{\omega}{\omega_n}\right) \end{aligned}$$

Phase:

• for 
$$\omega \ll \omega_n$$
,  $\phi \approx 0^\circ$  (real and positive)

• for 
$$\omega = \omega_n$$
,  $\phi = 90^\circ$  (Re = 0, Im > 0)

• for 
$$\omega \gg \omega_n$$
,  $\phi \approx 180^\circ$  (Re  $\sim -\omega^2$ , Im  $\sim \omega$ )

For a stable complex zero, the phase steps up by  $180^{\circ}$  as we go through the breakpoint; as  $\zeta \to 0$ , the transition through the break-point gets sharper, almost step-like.

For a pole, the phase is multiplied by -1.

Type 3: Phase



# Example 2

$$KG(s) = \frac{0.01\left(s^2 + 0.01s + 1\right)}{s^2\left(\frac{s^2}{4} + 0.02\frac{s}{2} + 1\right)}$$

— already in Bode form

What can we tell about magnitude?

- low-frequency term  $\frac{0.01}{(j\omega)^2}$  with  $K_0 = 0.01, n = -2$ — asymptote has slope = -2, passes through  $(\omega = 1, M = 0.01)$
- complex zero with break-point at  $\omega_n = 1$  and  $\zeta = 0.005$  slope up by 2; large resonant dip
- complex pole with break-point at  $\omega_n = 2$  and  $\zeta = 0.01$  slope down by 2; large resonant peak

## Example 2: Magnitude Plot



# Example 2

$$KG(s) = \frac{0.01\left(s^2 + 0.01s + 1\right)}{s^2\left(\frac{s^2}{4} + 0.02\frac{s}{2} + 1\right)}$$

— already in Bode form

What can we tell about phase?

- low-frequency term  $\frac{0.01}{(j\omega)^2}$  with  $K_0 = 0.01, n = -2$ — phase starts at  $n \times 90^\circ = -180^\circ$
- ▶ complex zero with break-point at  $\omega_n = 1$  phase up by 180°
- $\blacktriangleright$  complex pole with break-point at  $\omega_n = 2$  phase down by 180°
- since  $\zeta$  is small for both pole and zero, the transitions are very sharp

Example 2: Phase Plot



# Unstable Zeros/Poles?

So far, we've only looked at transfer functions with stable poles and zeros (except perhaps at the origin). What about RHP?

Example: consider two transfer functions,

$$G_1(s) = \frac{s+1}{s+5}$$
 and  $G_2(s) = \frac{s-1}{s+5}$ 

Note:

- $G_1$  has stable poles and zeros;  $G_2$  has a RHP zero.
- ▶ Magnitude plots of  $G_1$  and  $G_2$  are the same —

$$|G_1(j\omega)| = \left|\frac{j\omega+1}{j\omega+5}\right| = \sqrt{\frac{\omega^2+1}{\omega^2+5}}$$
$$|G_2(j\omega)| = \left|\frac{j\omega-1}{j\omega+5}\right| = \sqrt{\frac{\omega^2+1}{\omega^2+5}}$$

► All the difference is in the phase plots!

Phase Plot for  $G_1$ 

$$G_1(j\omega) = \frac{j\omega+1}{j\omega+5} = \frac{1}{5}\frac{j\omega+1}{\frac{j\omega}{5}+1}$$

Low-frequency term: <sup>1</sup>/<sub>5</sub>(jω)<sup>0</sup>— n = 0, so phase starts at 0°
Break-points at ω<sub>n</sub> = 1 (phase goes up by 90°) and at ω<sub>n</sub> = 5 (phase goes down by 90°)



### Phase Plot for $G_2$

$$G_2(j\omega) = \frac{j\omega - 1}{j\omega + 5} = \frac{1}{5} \frac{j\omega - 1}{\frac{j\omega}{5} + 1}$$

New type of behavior —

For a RHP zero, the phase starts out at  $180^{\circ}$  and goes down by  $90^{\circ}$  through the break-point ( $135^{\circ}$  at break-point).

### Phase Plot for $G_2$



For a RHP zero, the phase plot is similar to what we had for a LHP pole: goes down by  $90^{\circ}$  ... However, it starts at  $180^{\circ}$ , and not at  $0^{\circ}$ .

## Minimum-Phase and Nonminimum-Phase Zeros



Among all transfer functions with the same magnitude plot, the one with only LHP zeros has the minimal net phase change as  $\omega$  goes from 0 to  $\infty$  — hence the term *minimum-phase* for LHP zeros.

# Bode's Gain-Phase Relationship



Assuming that G(s) is *minimum-phase* (i.e., has no RHP zeros), we derived the following for the Bode plot of KG(s):

|            | low freq.             | real zero/pole          | complex zero/pole        |
|------------|-----------------------|-------------------------|--------------------------|
| mag. slope | n                     | up/down by 1            | up/down by $2$           |
| phase      | $n \times 90^{\circ}$ | up/down by $90^{\circ}$ | up/down by $180^{\circ}$ |

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase  $\approx$  Magnitude Slope  $\times 90^{\circ}$