ECE 486: Control Systems

Lecture 14C: Introduction to Bode Plots for Higher-Order Systems

Key Takeaways

Consider a system whose transfer function is $G(s) = G_1(s)G_2(s)$.

- The Bode phase plot of G(s) is the sum of the phase plots of G₁(s) and G₂(s).
- The Bode magnitude plot of G(s) (in dB) is the sum of the magnitude plots of G₁(s) and G₂(s).

This can be used to draw Bode plots for higher order systems.

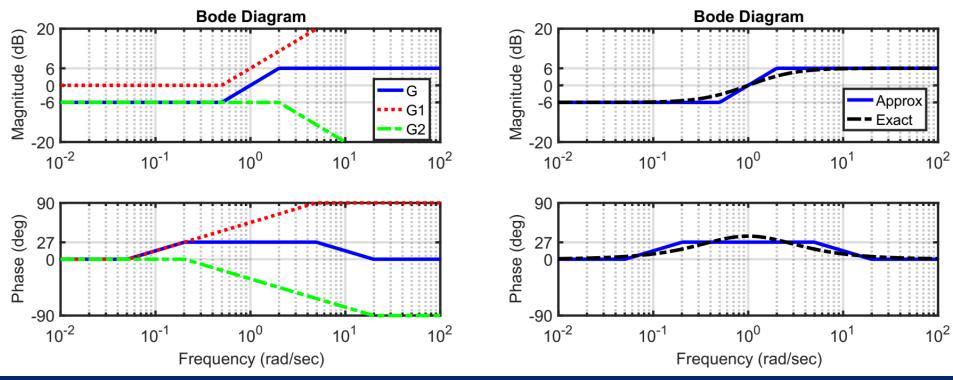
Products of Transfer Functions

- Consider a system whose transfer function is $G(s) = G_1(s)G_2(s)$.
- The response of G(s) at frequency ω is:

 $G(j\omega) = G_1(j\omega) G_2(j\omega) = |G_1(j\omega)| e^{j \angle G_1(j\omega)} |G_2(j\omega)| e^{j \angle G_2(j\omega)}$

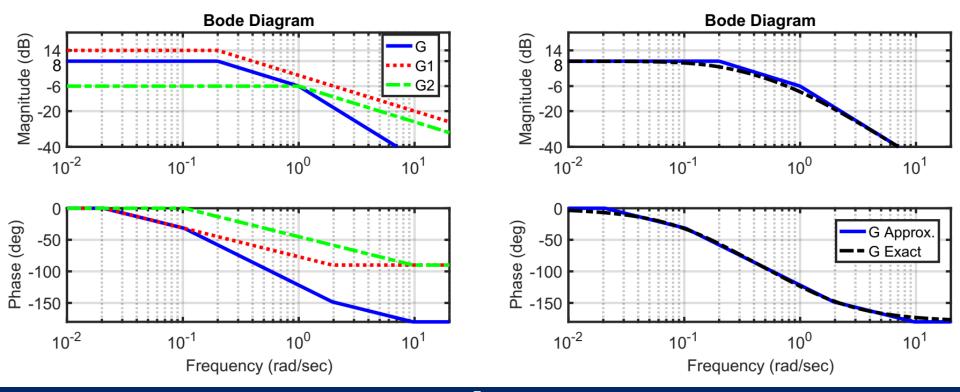
 $\Rightarrow |G(j\omega)| = |G_1(j\omega)| \cdot |G_2(j\omega)| \qquad \angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega)$

• Next recall that for any real numbers c_1 and c_2 : $\log_{10}(c_1c_2) = \log_{10}(c_1) + \log_{10}(c_2)$


• Thus the magnitude of $G(j\omega)$ in dB is given by:

 $|G(j\omega)|_{dB} = |G_1(j\omega)|_{dB} + |G_2(j\omega)|_{dB}$

The Bode phase plot of G(s) is the sum of the phase plots of $G_1(s)$ and $G_2(s)$. The Bode magnitude plot of G(s) (in dB) is the sum of the magnitude plots of $G_1(s)$ and $G_2(s)$.


Example: Lead Controller

- Consider the first-order system: $\dot{u}(t) + 2u(t) = 2\dot{e}(t) + e(t)$ $G(s) = \frac{2s+1}{s+2}$
- Express transfer function as a product: $G(s) = G_1(s)G_2(s)$ where $G_1(s) = 2s + 1$ and $G_2(s) = \frac{1}{s+2}$.

Example: Overdamped Second-Order System

- Consider the first-order system: $\ddot{y}(t) + 1.2\dot{y}(t) + 0.2y(t) = 0.5u(t)$ $G(s) = \frac{0.5}{s^2+1.2s+0.2}$
- Express transfer function as a product: $G(s) = G_1(s)G_2(s)$ where $G_1(s) = \frac{1}{s+0.2}$ and $G_2(s) = \frac{0.5}{s+1}$.

