ECE 486: Control Systems

Lecture 13A: Steady-State Sinusoidal Response

Key Takeaways

The transfer function G(s) is used to express the solution of a stable linear system forced by a sinusoidal input.

If the input is $u(t) = sin(\omega t)$ then the response satisfies:

 $y(t) \rightarrow |G(j\omega)| \sin(\omega t + \angle G(j\omega)) \text{ as } t \rightarrow \infty$ The output converges to a sinusoid at the same frequency as the input but with amplitude scaled by $|G(j\omega)|$ and phase is shifted by $\angle G(j\omega)$.

Problem 1

Consider the following first-order system and sinusoidal input:

 $-2\dot{y}(t) - y(t) = 3u(t) \qquad \qquad u(t) = 5\sin(4t + 0.1)$

A) What is the magnitude and phase of $G(j\omega)$?

B) Is the steady-state response bounded? If yes, what is it?

Consider the following first-order system and sinusoidal input:

 $-2\dot{y}(t) + y(t) = 3u(t) \qquad u(t) = 5\sin(4t + 0.1)$

C) What is the magnitude and phase of $G(j\omega)$?

D) Is the steady-state response bounded? If yes, what is it?

Solution 1A and 1B

Consider the following first-order system and sinusoidal input:

 $-2\dot{y}(t) - y(t) = 3u(t) \qquad \qquad u(t) = 5\sin(4t + 0.1)$

A) What is the magnitude and phase of $G(j\omega)$?

B) Is the steady-state response bounded? If yes, what is it?

-> -25-1=> -> S=-1/2 Stole) $G(s) = \frac{s}{-2s-1}$ $G(i_j) = -\frac{3}{-2(i_j)^{-1}} = -\frac{3}{-8j^{-1}} \cdot \left(\frac{8j^{-1}}{-8j^{-1}}\right) = -\frac{-3+24j}{65}$ $|G(Y_{j})| = \sqrt{(3/65)^{2} + (27/65)^{2}} = 0.37$ ~ × GY;) = 1,70 Correction y(t) - 5 |G(4]) | Sin (4++0.1+66(4)) = 1.85 sin (4++1.80) ye

Solution 1C and 1D

Consider the following first-order system and sinusoidal input: $-2\dot{y}(t) + y(t) = 3u(t)$ $u(t) = 5\sin(4t + 0.1)$

C) What is the magnitude and phase of $G(j\omega)$?

D) Is the steady-state response bounded? If yes, what is it?

Solution 1-Extra Space

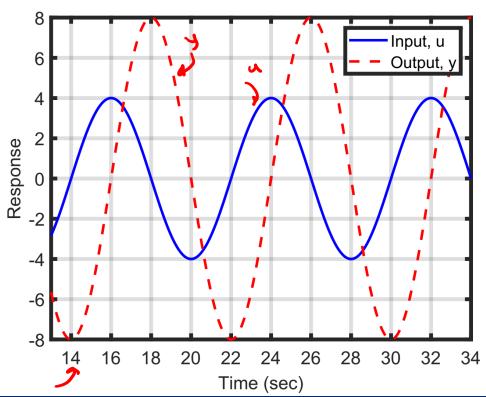
Problem 2

The figure shows the output y(t) generated by a linear system G(s) with input u(t) = $A_0 \cos(\omega_0 t)$.

A) What are the values of A_0 and ω_0 for the input signal u(t)?

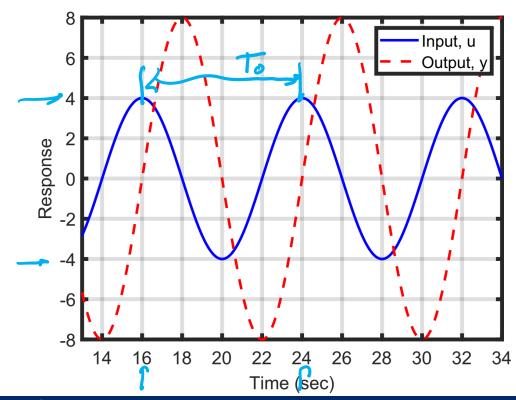
B) What is the magnitude $|G(j\omega_0)|$?

C) What is the phase $\angle G(j\omega_0)$ in degrees?

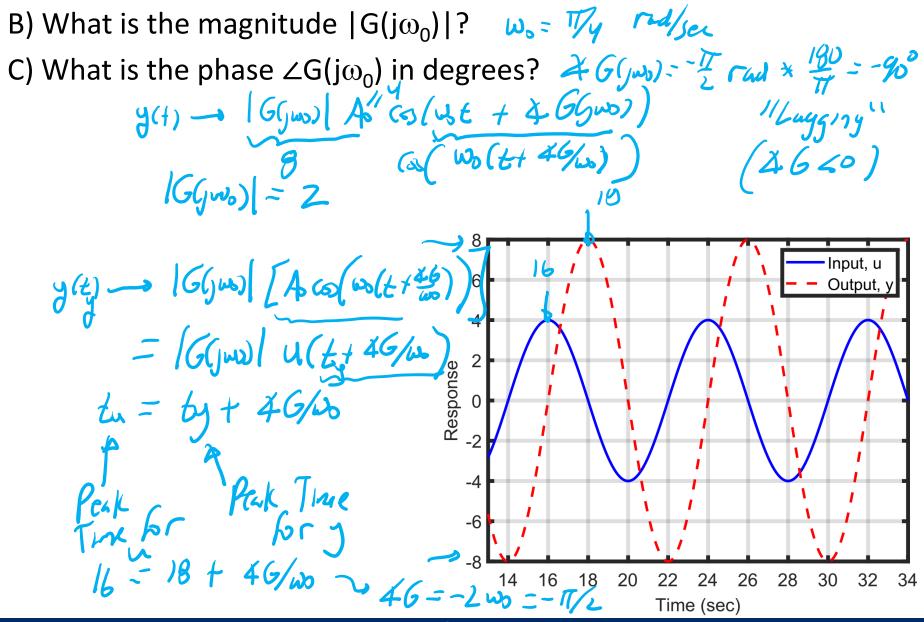


Solution 2A

A) What are the values of A_0 and ω_0 for the input signal u(t)? $A_0 = 4$ $U(t) = A_0 Coscord$



Solution 2B and 2C



ECE 486: Control Systems

Lecture 13B: Bode Plots

Key Takeaways

A Bode plot for an LTI system *G(s)* consists of two subplots:

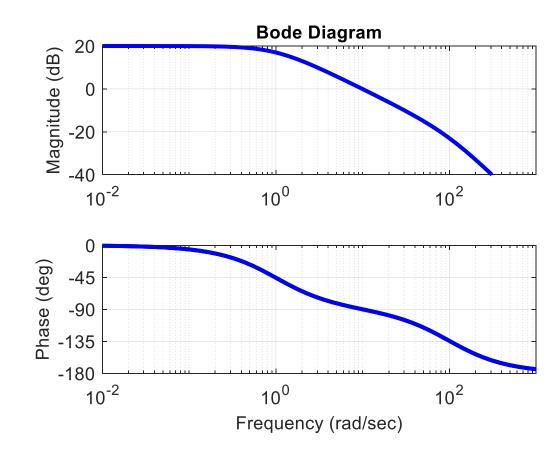
- Magnitude (Gain) vs. frequency and
- Phase vs. frequency.

Such plots are useful to understand the steady-state response of the system G(s) to sinusoids of different frequencies.

Problem 3

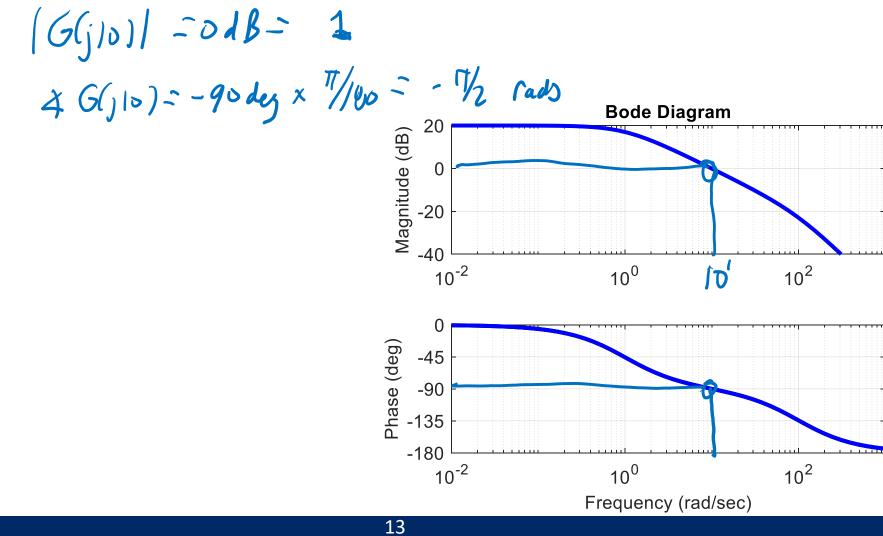
A linear system G(s) with input u and output y has the Bode plot shown below.

- A) What is |G(10j)| in dB and actual units?
- B) What is $\angle G(10j)$ in degs and radians?
- C) What is the output response y(t) in steady-state for the input u(t) = 2 cos(10t)?
- D) What is the steady-state value of y(t) if the input is a unit step u(t) = 1 for all $t \ge 0$?



Solution 3A and 3B

A) What is |G(10j)| in dB and actual units? B) What is $\angle G(10j)$ in degs and radians?



Solution 3C

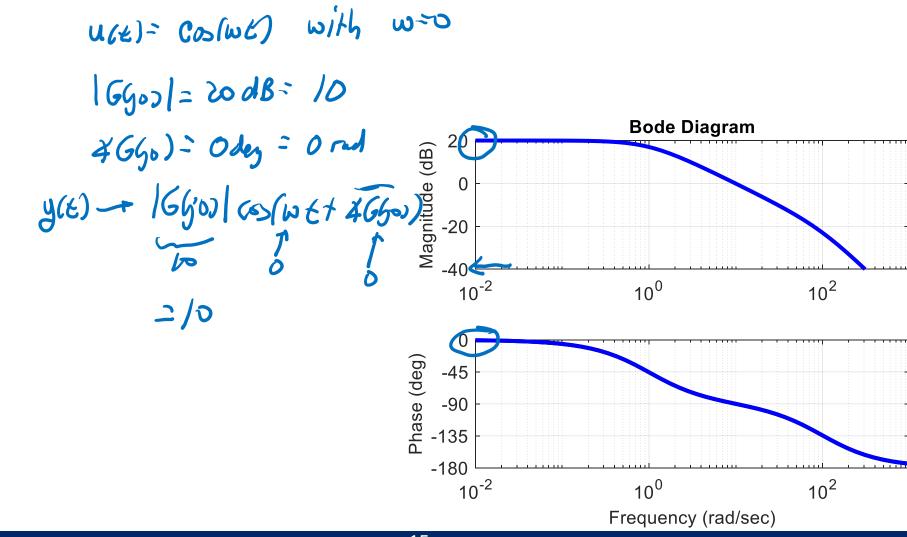
C) What is the output response y(t) in steady-state for the input $u(t) = 2 \cos(10t)$?

y(t) ~ 2[G(j·10) cos(10t + & G(j/0)) =-TTJ_L rads Z cos(10t-TT/2) **Bode Diagram** 20 Magnitude (dB) 0 -20 -40 10⁻² 10⁰ 10² 0 ^{ohase} (deg) -45 -90 -135 -180 10⁻² 10^{0} 10²

Frequency (rad/sec)

Solution 3D

D) What is the steady-state value of y(t) if the input is a unit step u(t) = 1 for all $t \ge 0$?



Solution 3-Extra Space

IF G is stable then G(.) Foul Glo) <0 - ±180° Glo) => -> unde hard Glo) >> -> 0° -6(5) 6(.)

ECE 486: Control Systems

Lecture 13C: Bode Plots for First-Order Systems

Key Takeaways

This lecture focuses on Bode plots for first order systems.

The Bode plot for $G(s) = \frac{b_0}{s+a_0}$ has the following key features:

- The pole defines a corner frequency ($\omega = |a_0|$) for the system.
- The magnitude is flat at low frequencies and rolls off at -20dB per decade at high frequencies.
- The phase transitions by $\pm 90^{\circ}$ near the corner frequency with precise details depending on the signs of (b_0, a_0) .

The Bode plot for $G(s) = \frac{s+b_0}{a_0}$ has the similar features except:

- The zero defines a corner frequency ($\omega = |b_0|$) for the system.
- The magnitude rolls up at +20dB per decade at high frequencies.

Problem 4

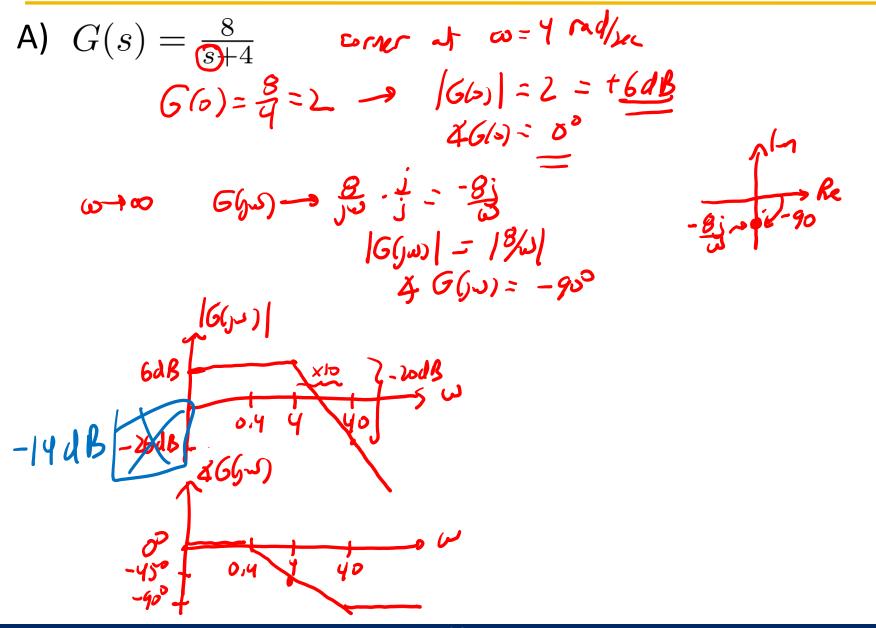
Sketch approximate, straight-line Bode plots for the following systems:

A)
$$G(s) = \frac{8}{s+4}$$

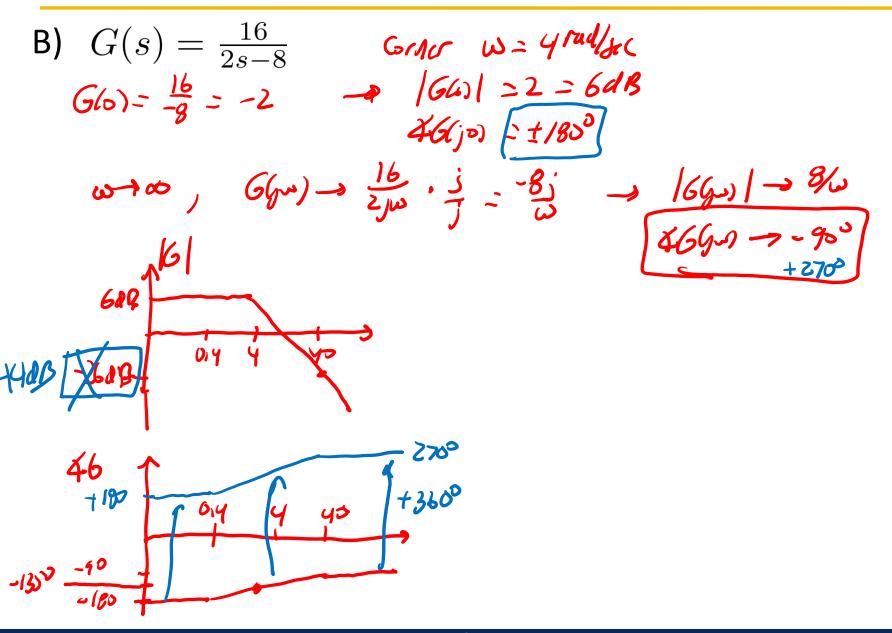
B)
$$G(s) = \frac{10}{2s-8}$$

C)
$$G(s) = 3s + 6$$

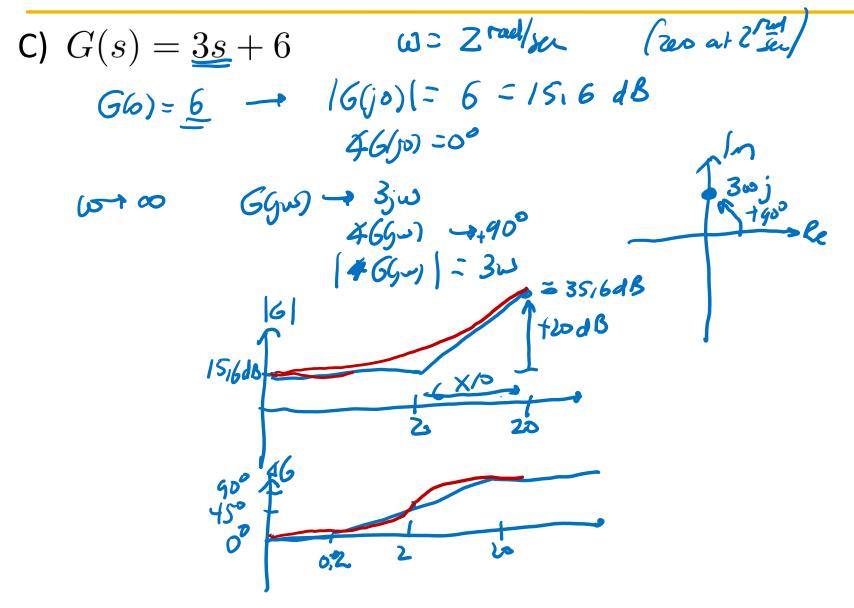
Solution 4A



Solution 4B



Solution 4C



Solution 4-Extra Space