ECE 486: Control Systems

Lecture 13C: Bode Plots for First-Order Systems

Key Takeaways

This lecture focuses on Bode plots for first order systems.

The Bode plot for $G(s) = \frac{b_0}{s+a_0}$ has the following key features:

- The pole defines a corner frequency ($\omega = |a_0|$) for the system.
- The magnitude is flat at low frequencies and rolls off at -20dB per decade at high frequencies.
- The phase transitions by $\pm 90^{\circ}$ near the corner frequency with precise details depending on the signs of (b_0, a_0) .

The Bode plot for $G(s) = \frac{s+b_0}{a_0}$ has the similar features except:

- The zero defines a corner frequency ($\omega = |b_0|$) for the system.
- The magnitude rolls up at +20dB per decade at high frequencies.

First-Order Systems

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

>> bode(G);

It will be useful to sketch straight-line approximate Bode plots.

Corner Frequency

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

Corner Frequency

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

⇔ Faster Response

Low-Frequency Approximation

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

Low Frequency: $\omega \leq \frac{a_0}{10}$ **Bode Diagram** -6 -9 Magnitude (dB) $G(j\omega) \approx \frac{b_0}{a_0}$ -26 |S|
$$\begin{split} \angle G(j\omega) &= 0^o \\ |G(j\omega)| &= G(0) \end{split}$$
-46 0.04 0.4 4 40 400 0 Phase (deg) 5 -90 0.04 0.4 4 40 400 Frequency (rad/sec)

High-Frequency Approximation

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

High-Frequency Approximation

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

Frequency (rad/sec)

Middle-Frequency Approximation

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) = \frac{b_0}{s + a_0}$

To start, assume $a_0 > 0$ and $b_0 > 0$.

Middle Frequency:

 $\frac{a_0}{10} \le \omega \le 10a_0$

- Straight line approximation to connect low/high freqs.
- Magnitude: Lines meet at corner frequency.
- Phase: Line passes through -45° at corner frequency.

General First-Order System

Consider the following first-order system:

$$\dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $G(s) =$

Allow a_0 and b_0 to take any sign.

Bode Plots:

- Use same procedure for straight-line approximation.
- Magnitude is unchanged.
- Phase changes by $\pm 90^{\circ}$ but details depend on signs of (a_0, b_0) .
- Bode plots can be drawn for unstable systems.

 $\frac{b_0}{s+a_0}$

First-Order Zero

Consider the following first-order system:

$$a_0 y(t) = \dot{u}(t) + b_0 u(t)$$
 $G(s) = \frac{s+b_0}{a_0}$

Allow a_0 and b_0 to take any sign.

Bode Plots:

- Use same procedure for straight-line approximation.
- Corner frequency at the zero $\omega = |a_0|$
- Magnitude rises at +20dB per decade at high frequencies.

