ECE 486: Control Systems

Lecture 13A: Steady-State Sinusoidal Response

Key Takeaways

The transfer function $G(s)$ is used to express the solution of a stable linear system forced by a sinusoidal input.

If the input is $u(t)=\sin (\omega t)$ then the response satisfies:

$$
y(t) \rightarrow|G(j \omega)| \sin (\omega t+\angle G(j \omega)) \text { as } t \rightarrow \infty
$$

The output converges to a sinusoid at the same frequency as the input but with amplitude scaled by $|G(j \omega)|$ and phase is shifted by $\angle G(j \omega)$.

Revisiting The Transfer Function

The transfer function $\mathrm{G}(\mathrm{s})$ was introduced as notation for an ODE.

Now we'll think of it as a function that takes a complex number s as input and returns a complex number $G(s)$.

The response of the ODE to a sinusoidal input depends on the transfer function evaluated at a purely imaginary number $\mathrm{s}=\mathrm{j} \omega$ where $\omega>0$ is the frequency in rad/sec.

The result $G(j w)$ is a complex number that can be expressed in

- Cartesian form by its real and imaginary parts, or
- Polar form by its magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$.

Example

- Stable, first-order system:

$$
\dot{y}(t)+4 y(t)=2 u(t)
$$

- Evaluate at $\omega=3 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\frac{2}{s+4}
$$

- Cartesian Form:

$$
G(3 j)=\frac{2}{3 j+4} \cdot \frac{4-3 j}{4-3 j}=\frac{8-6 j}{25}=0.32-0.24 j
$$

- Polar Form:

$$
|G(3 j)|=\sqrt{0.32^{2}+0.24^{2}}=0.4
$$

$$
\angle G(3 j)=\tan ^{-1}\left(-\frac{0.24}{0.32}\right)
$$

$$
=-0.64 \mathrm{rads}
$$

$G(j \omega)=0.4 e^{-0.64 j}$

Sinusoidal Response: First-Order Systems

Consider the stable, first-order system:
$\dot{y}(t)+a_{0} y(t)=b_{0} u(t)$ with $y(0)=y_{0}$

$$
G(s)=\frac{b_{0}}{s+a_{0}}
$$

First consider complex exponential inputs: $u(t)=e^{j \omega t}$
The characteristic equation has one root: $s_{1}=-a_{0}<0$
The general form of the forced-response solution is:

$$
y(t)=y_{P}(t)+c_{1} e^{-a_{0} t}
$$

"Guess" the particular solution: $y_{P}(t)=c_{P} e^{j \omega t}$
Sub into the ODE:

$$
j \omega c_{P} e^{j \omega t}+a_{0} c_{P} e^{j \omega t}=b_{0} e^{j \omega t} \quad \Rightarrow c_{P}=\frac{b_{0}}{j \omega+a_{0}}=G(j \omega)
$$

General solution:

$$
y(t)=G(j \omega) e^{j \omega t}+c_{1} e^{-a_{0} t} \Rightarrow y(t) \rightarrow G(j \omega) e^{j \omega t} \text { as } t \rightarrow \infty
$$

(Convergence depends on $\tau_{1}=\frac{1}{a_{0}}$)

Sinusoidal Response: First-Order Systems

Consider the stable, first-order system:

$$
\dot{y}(t)+a_{0} y(t)=b_{0} u(t) \text { with } y(0)=y_{0}
$$

$$
G(s)=\frac{b_{0}}{s+a_{0}}
$$

Transfer function in polar form: $G(j \omega)=|G(j \omega)| e^{j \angle G(j \omega)}$ Recall Euler's formula:

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

Take imaginary part of complex solution

$$
\begin{aligned}
& u(t)=e^{j \omega t} \\
& u(t)=\sin (\omega t)
\end{aligned} G\left(\begin{array}{l}
y(t) \rightarrow G(j \omega) e^{j \omega t}=|G(j \omega)| e^{j(\omega t+\angle G(j \omega))}
\end{array} \xrightarrow[y(t) \rightarrow|G(j \omega)| \sin (\omega t+\angle G(j \omega))]{ }\right.
$$

Steady-State Sinusoidal Response

Consider a stable, $\mathrm{n}^{\text {th }}$-order system with transfer function:

$$
\begin{gathered}
G(s)=\frac{b_{m} s^{m}+\cdots+b_{1} s+b_{0}}{a_{n} s^{n}+\cdots+a_{1} s+a_{0}} \\
u(t)=\sin (\omega t) \xrightarrow{y(s)} \underset{y(t) \rightarrow A|G(j \omega)| \sin (\omega t+\theta+\angle G(j \omega))}{ } \begin{array}{c}
y(t) \rightarrow|G(j \omega)| \sin (\omega t+\angle G(j \omega))
\end{array} \\
u(t)=A \sin (\omega t+\theta)
\end{gathered}
$$

Example

- Consider the following stable, first-order system:

$$
\dot{y}(t)+4 y(t)=2 u(t) \text { with IC: } y(0)=1.5 \quad G(s)=\frac{2}{s+4}
$$

- Find response due to $u(t)=\sin (2 t)$
- Evaluate transfer function:

$$
\omega=2 \frac{\mathrm{rad}}{\mathrm{sec}} \Rightarrow|G(2 j)|=0.447 \text { and } \angle G(2 j)=-0.464 \mathrm{rads}
$$

- Sinusoidal response:

$$
y(t) \rightarrow 0.447 \sin (2 t-0.464)
$$

Time constant is $\tau=\frac{1}{4} \sec$
Transient decays after

$$
3 \tau=0.75 \mathrm{sec}
$$

Leading vs. Lagging Response

- Steady-state sinusoidal response:

$$
y(t) \rightarrow|G(j \omega)| \sin (\omega t+\angle G(j \omega))
$$

- Re-write as:

$$
y(t) \rightarrow|G(j \omega)| \sin \left(\omega\left(t-t_{\text {shift }}\right)\right) \text { where } t_{\text {shift }}:=-\frac{\angle G(j \omega)}{\omega}
$$

- Terminology:

Lagging: $\angle G(j \omega)<0 \Rightarrow t_{\text {shift }}>0$
Leading: $\angle G(j \omega)>0 \Rightarrow t_{\text {shift }}<0$
$y(t) \rightarrow 0.447 \sin (2 t-0.464)$
$y(t) \rightarrow 0.447 \sin (2(t-0.232))$
$u(2 \pi)=0$ and $y(t)=0$ at
$t=2 \pi+0.232 \approx 6.515 \mathrm{sec}$.

