ECE486: Control Systems

- Lecture 12B: Case Study on Control Design

Goal: learn how to use Root Locus to select control gains.
Reading: FPE, Chapter 5

Reminder: Root Locus

where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}, m \leq n$

Root locus: the set of all $s \in \mathbb{C}$ that solve the characteristic equation

$$
a(s)+K b(s)=0
$$

as K varies from 0 to ∞.

Using RL to Select Parameter Values

In Lab 5, you will need to select the value of gain K that corresponds to a desired pole on the root locus.

Here is one way of doing it:

\[

\]

Control Design Using Root Locus

Case study: double integrator, transfer function $G(s)=\frac{1}{s^{2}}$
Control objective: ensure stability; meet time response specs.
First, let's try a simple P-gain:

Closed-loop transfer function:

$$
\frac{\frac{K}{s^{2}}}{1+\frac{K}{s^{2}}}=\frac{K}{s^{2}+K}
$$

Double Integrator with P-Gain

Closed-loop transfer function:

$$
\frac{\frac{K}{s^{2}}}{1+\frac{K}{s^{2}}}=\frac{K}{s^{2}+K}
$$

Characteristic equation:

$$
s^{2}+K=0
$$

Closed-loop poles: $s= \pm \sqrt{K} j$

This confirms what we already knew: P-gain alone does not deliver stability.

Double Integrator with PD-Control

Characteristic equation: $\begin{gathered}1+\underbrace{\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)}_{G_{c}(s)} \cdot \underbrace{\frac{1}{s^{2}}}_{G_{p}(s)}=0 \\ s^{2}+K_{\mathrm{D}} s+K_{\mathrm{P}}=0\end{gathered}$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{aligned}
& 1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right) \frac{1}{s^{2}}=1+K_{\mathrm{D}} \cdot \frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \\
\Longrightarrow & \left.K=K_{\mathrm{D}}, L(s)=\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \quad \text { (assume } K_{\mathrm{P}} / K_{\mathrm{D}} \text { fixed, }=1\right)
\end{aligned}
$$

Double Integrator with PD-Control

Characteristic equation: $\quad 1+K \cdot \frac{s+1}{s^{2}}=0$
Here we can still write out the roots explicitly:

$$
s^{2}+K s+K=0 \quad \Longrightarrow \quad s=\frac{-K \pm \sqrt{K^{2}-4 K}}{2}
$$

But let's actually draw the RL using the rules:
Rule A: 2 branches
Rule B: both start at $s=0$
Rule C: one ends at $z_{1}=-1$, the other at ∞
Rule D: one branch will go off to $-\infty$
Rule E: asymptote angles at 180°
Rule F: no $j \omega$-crossings except for

$s=p_{1}=p_{2}=0$

Double Integrator with PD-Control

Characteristic equation: $\quad 1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

- all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)
- nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an open-loop zero into LHP, and this zero "pulled" the root locus into LHP, thus stabilizing the system.

