ECE 486: Control Systems

Lecture 11A: Introduction to Root Locus Method

Problem 1

Suppose
$$L = \frac{1}{s^2 + 2s}$$
.

(a) Solve the closed-loop poles as a function of K.(b) Draw the root locus.

(c) Is it possible to select K to achieve settling time $\leq 3s$?

Solution 1A

• Solve the closed-loop poles as a function of K

$$L = \frac{1}{s^2 + 2s}$$

Solution 1B

• Draw the root locus.

$$L = \frac{1}{s^2 + 2s}$$

Solution 1C

• Is it possible to select K to achieve settling time ≤ 3 seconds?

$$L = \frac{1}{s^2 + 2s}$$

Solution 1-Extra Space

ECE 486: Control Systems

Lecture 11B: Root Locus Rules ABC

Problem 2

Consider the following functions.

$$L = \frac{1}{s^2 + 2s + 10}, \qquad L = \frac{s - 3}{s^2 + 2s + 10}, \qquad L = \frac{s + 4}{s^5 + 1}$$

Problem 2A

Consider the following functions.

$$L = \frac{1}{s^2 + 2s + 10}$$

Problem 2B

Consider the following functions.

$$L = \frac{s - 3}{s^2 + 2s + 10}$$

Problem 2C

Consider the following functions.

$$L = \frac{s+4}{s^5+1}$$

Solution 2-Extra Space