
ECE486: Control Systems

I Lecture 11A: Introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing
the locations of closed-loop poles of a given system as some
parameter is varied.

Reading: FPE, Chapter 5



The Root Locus Design Method
(invented by Walter R. Evans in 1948)

Consider this unity feedback configuration:

L(s) YK
+

�R

where

I K is a constant gain

I L(s) =
b(s)

a(s)
, where a(s) and b(s) are some polynomials

Problem: How to choose K to stabilize the closed-loop
system?



The Root Locus Design Method

L(s) YK
+

�R

Closed-loop transfer function:
Y

R
=

KL(s)

1 +KL(s)
, L(s) =

b(s)

a(s)

Closed loop poles are solutions of:

1 +KL(s) = 0 ⇔ L(s) = − 1

K
m

1 +
Kb(s)

a(s)
= 0

m
a(s) +Kb(s)︸ ︷︷ ︸

characteristic
polynomial

= 0 characteristic equation



A Comment on Change of Notation

Note the change of notation:

from G(s) =
q(s)

p(s)
to L(s) =

b(s)

a(s)

— the RL method is quite general, so L(s) is not necessarily
the plant transfer function, and K is not necessary feedback
gain (could be any parameter).

E.g., L(s) and K may be related to plant transfer function and
feedback gain through some transformation.

As long as we can represent the poles of the closed-loop transfer
function as roots of the equation 1 +KL(s) = 0 for some choice
of K and L(s), we can apply the RL method.



Towards Quantitative Characterization of Stability

Qualitative description of stability: Routh test gives us a range
of K to guarantee stability.
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For what values of K do we best satisfy given
design specs?



Root Locus and Quantitative Stability

L(s) YK
+

�R

Closed-loop transfer function:
Y

R
=

KL(s)

1 +KL(s)
, L(s) =

b(s)

a(s)

For what values of K do we best satisfy given design specs?

Specs are encoded in pole locations, so:

The root locus for 1 +KL(s) is the set of all closed-loop
poles, i.e., the roots of

1 +KL(s) = 0,

as K varies from 0 to ∞.



A Simple Example

L(s) =
1

s2 + s
b(s) = 1, a(s) = s2 + s

Characteristic equation: a(s) +Kb(s) = 0

s2 + s+K = 0

Here, we can just use the quadratic formula:

s = −1±
√

1− 4K

2
= −1

2
±
√

1− 4K

2

Root locus =

{
−1

2
±
√

1− 4K

2
: 0 ≤ K <∞

}
⊂ C



Example, continued

Root locus =

{
−1

2
±
√

1− 4K

2
: 0 ≤ K <∞

}
⊂ C

Let’s plot it in the s-plane:

I start at K = 0 the roots are −1
2 ± 1

2 ≡ −1, 0
note: these are poles of L (open-loop poles)
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Example, continued

Root locus:

{
−1

2
±
√

1− 4K

2
: 0 ≤ K <∞

}
⊂ C

I as K increases from 0, the poles start to move

1− 4K > 0 =⇒ 2 real roots

K = 1/4 =⇒ 1 real root s = −1/2
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Example, continued

Root locus:

{
−1

2
±
√

1− 4K

2
: 0 ≤ K <∞

}
⊂ C

I as K increases from 0, the poles start to move

K > 1/4 =⇒ 2 complex roots with Re(s) = −1/2
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(s = −1/2 is the point of breakaway from the real axis)



Example, continued
Compare this to admissible regions for given specs:

ts ≈
3

σ
want σ large, can only have σ =

1

2
(ts = 6)

tr ≈
1.8

ωn
want ωn large =⇒ want K large

Mp want to be inside the shaded region =⇒ want K small
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Thus, the root locus helps us visualize the trade-off between all
the specs in terms of K.

However, for order > 2, there will generally be no direct formula
for the closed-loop poles as a function of K.

Our goal: develop simple rules for (approximately) sketching
the root locus in the general case.


