ECE486: Control Systems

- Lecture 11A: Introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing the locations of closed-loop poles of a given system as some parameter is varied.

Reading: FPE, Chapter 5

The Root Locus Design Method

(invented by Walter R. Evans in 1948)

Consider this unity feedback configuration:

where

- K is a constant gain
$\downarrow L(s)=\frac{b(s)}{a(s)}$, where $a(s)$ and $b(s)$ are some polynomials
Problem: How to choose K to stabilize the closed-loop system?

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

$$
\begin{aligned}
1+K L(s)= & 0 \quad \Leftrightarrow \quad L(s)=-\frac{1}{K} \\
& \Uparrow \\
1+\frac{K b(s)}{a(s)}= & 0 \\
& \mathbb{\Downarrow} \\
\underbrace{a(s)+K b(s)}= & 0 \quad \text { characteristic equation }
\end{aligned}
$$

A Comment on Change of Notation

Note the change of notation:

$$
\text { from } G(s)=\frac{q(s)}{p(s)} \quad \text { to } L(s)=\frac{b(s)}{a(s)}
$$

- the RL method is quite general, so $L(s)$ is not necessarily the plant transfer function, and K is not necessary feedback gain (could be any parameter).
E.g., $L(s)$ and K may be related to plant transfer function and feedback gain through some transformation.

As long as we can represent the poles of the closed-loop transfer function as roots of the equation $1+K L(s)=0$ for some choice of K and $L(s)$, we can apply the RL method.

Towards Quantitative Characterization of Stability

Qualitative description of stability: Routh test gives us a range of K to guarantee stability.

For what values of K do we best satisfy given design specs?

Root Locus and Quantitative Stability

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
For what values of K do we best satisfy given design specs?
Specs are encoded in pole locations, so:
The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.

A Simple Example

$$
L(s)=\frac{1}{s^{2}+s} \quad b(s)=1, a(s)=s^{2}+s
$$

Characteristic equation:

$$
a(s)+K b(s)=0
$$

$$
s^{2}+s+K=0
$$

Here, we can just use the quadratic formula:

$$
s=-\frac{1 \pm \sqrt{1-4 K}}{2}=-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}
$$

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

- start at $K=0 \quad$ the roots are $-\frac{1}{2} \pm \frac{1}{2} \equiv-1,0$ note: these are poles of L (open-loop poles)

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
\begin{aligned}
1-4 K>0 & \Longrightarrow 2 \text { real roots } \\
K=1 / 4 & \Longrightarrow 1 \text { real root } s=-1 / 2
\end{aligned}
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
K>1 / 4 \quad \Longrightarrow 2 \text { complex roots with } \operatorname{Re}(s)=-1 / 2
$$

($s=-1 / 2$ is the point of breakaway from the real axis)

Example, continued

Compare this to admissible regions for given specs:
$t_{s} \approx \frac{3}{\sigma} \quad$ want σ large, can only have $\sigma=\frac{1}{2}\left(t_{s}=6\right)$
$t_{r} \approx \frac{1.8}{\omega_{n}} \quad$ want ω_{n} large \Longrightarrow want K large
$M_{p} \quad$ want to be inside the shaded region \Longrightarrow want K small

Thus, the root locus helps us visualize the trade-off between all the specs in terms of K.

However, for order >2, there will generally be no direct formula for the closed-loop poles as a function of K.

Our goal: develop simple rules for (approximately) sketching the root locus in the general case.

