ECE 486: Control Systems

Lecture 10A: Dominant Pole Approximation
Dominant-Pole Approximation

The dominant poles of a higher-order system are the slowest poles (largest time constant).

We can often approximate a higher-order system by a:

1. First-order approximation if the dominant pole is real
2. Second-order approximation if the dominant pole(s) are a complex pair.

The approximation is accurate if the dominant pole(s) are significantly slower than the remaining poles.

(Dominant pole time constant is 5x larger than other poles)
Problem 1

For each system:
• Construct a first-order or second-order approximation from the dominant pole.
• Do you expect the dominant pole approximation to be accurate?

For system A: Roughly sketch the unit step response of the dominant pole approximation. Note the final time, settling time, and overshoot (if underdamped).

\[G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)} \]

\[G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)} \]
Solution 1A

- Construct a first-order or second-order approximation from the dominant pole.
- Do you expect the dominant pole approximation to be accurate?
- Roughly sketch the unit step response of the dominant pole approximation. Note the final time, settling time, and overshoot (if underdamped).

\[G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)} \]
Solution 1B

• Construct a first-order or second-order approximation from the dominant pole.
• Do you expect the dominant pole approximation to be accurate?

\[G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)} \]
Solution 1-Extra Space
This lecture describes impact of actuator saturation and rate limits. These limits:

- Cause slower speed of response and
- Can lead to overshoot and oscillations if the controller does not properly account for the limits.

Anti-windup is one method to reduce the effect of saturation.
- It will prevent overshoot and oscillations.
- However, it does not change the slower speed of response which is a physical limit of the actuators.
Problem 2

Consider the following plant and PI controller:

\[\dot{y}(t) + 4y(t) = 2u(t) \quad u(t) = 5e(t) + 20 \int_0^t e(\tau)\,d\tau \]

A) What is the ODE that models the closed-loop from \(r \) to \(y \)?

B) The actuator saturates at \(u \in [-3, 3] \). Do you expect saturation to cause any issues if the reference commands are in the range \(r \in [-1, 1] \)? If yes, then how might you alleviate the issue?

C) Suppose instead that the references are in the range \(r \in [-10, 10] \). Can any controller (not just the PI controller above) achieve good reference tracking with this actuator? If not, then how would you re-select the actuator?
Consider the following plant and PI controller:

$$\dot{y}(t) + 4y(t) = 2u(t) \quad u(t) = 5e(t) + 20 \int_0^t e(\tau) d\tau$$

A) What is the ODE that models the closed-loop from r to y?
Consider the following plant and PI controller:

\[\dot{y}(t) + 4y(t) = 2u(t) \quad u(t) = 5e(t) + 20 \int_0^t e(\tau) \, d\tau \]

B) The actuator saturates at \(u \in [-3, +3] \). Do you expect saturation to cause any issues if the reference commands are in the range \(r \in [-1, +1] \)? If yes, then how might you alleviate the issue?
Consider the following plant and PI controller:

\[
\dot{y}(t) + 4y(t) = 2u(t) \quad u(t) = 5 e(t) + 20 \int_0^t e(\tau) \, d\tau
\]

C) Suppose instead that the references are in the range \(r \in [-10, +10] \). Can any controller (not just the PI controller above) achieve good reference tracking with this actuator? If not, then how would you re-select the actuator?
Solution 2-Extra Space
ECE 486: Control Systems

Lecture 10C: Control Law Implementation
Key Takeaways

It is common to implement controllers on a microprocessor. This lecture discusses some of the details associated with this implementation:

• Sample a measurement at specific (discrete) time intervals
• Update the control input \(u \) at each sample time.
• Hold the control input \(u \) constant until the next update.

The update equation is chosen to approximate the properties of the designed (ODE) controller. The update equation can be implemented on a microprocessor with a few lines of code.
Consider the following plant and PI controller:

\[2 \dot{y}(t) + 6y(t) = 8u(t) \]
\[u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) d\tau \]

A) What sampling time \(\Delta t \) would you recommend for a discrete-time implementation?

B) The value of \(u(t) \) at \(t = \Delta t \) is:

\[u(\Delta t) = 2.5 e(\Delta t) + 9 \int_0^{\Delta t} e(\tau) d\tau \]

Approximate \(u_1 := u(\Delta t) \) in terms \(e_0 := e(0) \) and \(e_1 := e(\Delta t) \).

C) The computations in the discrete-time update are not instantaneous and require some time. How can this be modeled?
Solution 3A

\[2y(t) + 6y(t) = 8u(t) \quad u(t) = 2.5e(t) + 9 \int_0^t e(\tau) \, d\tau \]

A) What sampling time \(\Delta t \) would you recommend for a discrete-time implementation?
B) The value of $u(t)$ at $t=\Delta t$ is:

$$u(\Delta t) = 2.5 e(\Delta t) + 9 \int_0^{\Delta t} e(\tau) \, d\tau$$

Approximate $u_1 := u(\Delta t)$ in terms $e_0 := e(0)$ and $e_1 := e(\Delta t)$.

$$2y(t) + 6y(t) = 8u(t) \quad \quad u(t) = 2.5 e(t) + 9 \int_0^t e(\tau) \, d\tau$$
Solution 3C

\[2\dot{y}(t) + 6y(t) = 8u(t) \quad u(t) = 2.5e(t) + 9 \int_0^t e(\tau) \, d\tau \]

C) The computations in the discrete-time update are not instantaneous and require some time. How can this be modeled?
Solution 3-Extra Space