Key Takeaways

It is common to implement controllers on a microprocessor. This lecture discusses some of the details associated with this implementation:

- Sample a measurement at specific (discrete) time intervals
- Update the control input u at each sample time.
- Hold the control input u constant until the next update.

The update equation is chosen to approximate the properties of the designed (ODE) controller. The update equation can be implemented on a microprocessor with a few lines of code.
Continuous-Time Control Design

• This course focuses on continuous-time control design.
• We use ODEs to model the plant and obtain a controller in the form of an ODE or transfer function:

\[K(s) = \frac{K_p s + K_i}{s}. \]

• It is common to implement the controller on a microprocessor using discrete-time updates.
1. Sample the measurement every \(\Delta t \) seconds.
2. Compute the error and use a difference equation to update the control input \(u \).
3. Hold the control input \(u \) constant until the next update.
Discrete-Time Implementation

The diagram shows the three main steps:

1. Sampling
2. Control Update
3. Zero-Order Hold

We will describe these in detail on the next few slides.
Sampling

- Plant output $y(t)$ is a continuous-time signal.
- Microprocessor samples every Δt seconds:
 \[y_1 := y(\Delta t) \]
 \[y_2 := y(2\Delta t) \]
 \[y_3 := y(3\Delta t) \]
- $y_k := y(k \cdot \Delta t)$ is a discrete-time signal
- Typically assume “fast” sampling, 10x faster than relevant dynamics.
Control Update

The microprocessor:

- Computes the error
 \[e_k = r_k - y_k \]
- Updates the discrete-time control with a difference equation, for example:
 \[u_k = u_{k-1} + 5e_k - 4.9e_{k-1} \]

The discrete-time update, denoted \(K_d(z) \), is chosen to approximate \(K(s) \).
(Details later.)
Difference Equation:

\[u_k = u_{k-1} + 5e_k - 4.9e_{k-1} \]

Pseudo-code for the update is:

Initialize: uprev=0, eprev=0
while(1)
 Obtain new samples: (r,y)
 Compute error: e = r - y
 Update control:
 u = uprev + 5*e - 4.9*eprev
 Update previous values:
 uprev = u, eprev = e
end
Zero-Order Hold

- The microprocessor only updates u_k when it receives a new sample.
- The discrete-time signal u_k must be converted to continuous-time $u(t)$.

Zero-Order Hold (ZOH)

$$u(t) = u_k$$
for $t \in [k\Delta t, (k + 1)\Delta t)$
Discretization

- (Continuous-Time) PI Controller

\[u(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau \]

- Evaluate at two consecutive time steps:

\[
\begin{align*}
 u((k - 1)\Delta t) &= K_p e((k - 1)\Delta t) + K_i \int_0^{(k-1)\Delta t} e(\tau) \, d\tau \\
 u(k\Delta t) &= K_p e(k\Delta t) + K_i \int_0^{k\Delta t} e(\tau) \, d\tau
\end{align*}
\]

- Subtract these equations and use \(u_k := u(k \cdot \Delta t) \), etc:

\[
\begin{align*}
 u_k - u_{k-1} &= K_p e_k - K_p e_{k-1} + K_i \int_{(k-1)\Delta t}^{k\Delta t} e(\tau) \, d\tau
\end{align*}
\]
Discretization

• Need to approximate the integral:

\[u_k - u_{k-1} = K_p e_k - K_p e_{k-1} + K_i \int_{(k-1)\Delta t}^{k\Delta t} e(\tau) \, d\tau \approx 0.5 \cdot (e_k + e_{k-1}) \Delta t \]

• Final difference equation approximation:

\[u_k = u_{k-1} + \left(K_p + K_i \frac{\Delta t}{2} \right) e_k - \left(K_p - K_i \frac{\Delta t}{2} \right) e_{k-1} \]
The discretization method generalizes to n^{th}-order controllers $K(s)$. The function \texttt{c2d} automates this.

\begin{verbatim}
>> K = tf([1 2 3],[4 5 6]);
>> DeltaT = 0.01;
>> Kd = c2d(K,DeltaT,'foh')
Kd =
 0.2509 z^2 - 0.4968 z + 0.246

 z^2 - 1.987 z + 0.9876
Sample time: 0.01 seconds
Discrete-time transfer function.
\end{verbatim}

\[
K(s) = \frac{s^2 + 2s + 3}{4s^2 + 5s + 6}
\]

\[
u_k = 1.987u_{k-1} - 0.9876u_{k-2} + 0.2509e_k - 0.4968e_{k-1} + 0.246e_{k-2}
\]

\[
u_k = 1.987u_{k-1} - 0.9876u_{k-2} + 0.2509e_k - 0.4968e_{k-1} + 0.246e_{k-2}
\]