ECE 486: Control Systems

Lecture 10B: Integrator Anti-windup

Key Takeaways

This lecture describes impact of actuator saturation and rate limits. These limits:

- Cause slower speed of response and
- Can lead to overshoot and oscillations if the controller does not properly account for the limits.

Anti-windup is one method to reduce the effect of saturation.

- It will prevent overshoot and oscillations.
- However, it does not change the slower speed of response which is a physical limit of the actuators.

Actuator Saturation and Rate Limits

- Actuators often have saturation limits on input values
 - A DC motor might be limited to $u \in [0,3]V$.
 - The steering angle on a car might be limited to $u \in [-30^{\circ}, +30^{\circ}]$
- Actuators often have rate limits
 - Aircraft have movable surfaces on the wings (e.g. ailerons) to control the motion.
 - These might be limited to $\dot{u} \in [-130^{o}/sec, +130^{o}/sec]$
- Effects of saturation and rate limits:
 - The speed of response is slower. The system must be re-designed if desired performance cannot be achieved due to these limits.
 - Large overshoot and oscillations can occur because the control algorithm does not account for these limits.

Anti-windup is one solution to reduce the effect of saturation.

Closed-Loop With Saturation

DC Motor: $G(s) = \frac{b_0}{s+a_0}$ where $a_0 = 0.94 \frac{1}{sec}$ and $b_0 = 766.8 \frac{rad}{sec^2 V}$ PI Control: Choose gains to place poles with $(\zeta, \omega_n) = (0.7, 10 \frac{rad}{sec})$ $\Rightarrow K_p = \frac{2\zeta\omega_n - a_0}{b_0} = 0.017$ and $K_i = \frac{\omega_n^2}{b_0} = 0.13$

This design assumes the motor input voltage is unlimited. Consider the effect of saturation $u(t) \in [u_{min}, u_{max}]V$

Degraded Performance Due to Saturation

Simulate step responses with

- $r(t) = 1000 \frac{rad}{sec}$ for $t \ge 0$
- $u_{min} = 0V$ and several values of u_{max}

Saturation causes both slower response times and

larger overshoots / oscillations

Integrator Windup

PI Controller: $u_{des}(t) = K_p e(t)$

$$u_{des}(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

Simulation below uses $u_{max} = 3V$. The integrator term grows to large value even while input is saturated.

Anti-Windup Protection

Express PI controller as:

$$\dot{z}(t) = e(t)$$
$$u_{des}(t) = K_p e(t) + K_i z(t)$$

Stop the integrator in certain situations when u_{des} is at the saturation limit. If $K_i > 0$:

$$\dot{z}(t) = \begin{cases} 0 & \text{if } u_{des}(t) \ge u_{max} \text{ and } e(t) \ge 0\\ 0 & \text{if } u_{des}(t) \le u_{min} \text{ and } e(t) \le 0\\ e(t) & \text{otherwise} \end{cases}$$

This is called conditional integration or clamping.

Anti-Windup Protection

Simulate step responses with

- $r(t) = 1000 \frac{rad}{sec}$ for $t \ge 0$
- $u_{min} = 0V$ and several values of u_{max}

Anti-windup prevents large overshoots / oscillations. It does not prevent the slower response (which is a physical limit).

Anti-Windup Protection

Simulate step responses with

- $r(t) = 1000 \frac{rad}{sec}$ for $t \ge 0$
- $u_{min} = 0V$ and $u_{max} = 3V$
- With and without anti-windup

Anti-windup prevents integrator from growing to large values.

