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» Review: basic properties and benefits of feedback control

» Today’s topic: introduction to
Proportional-Integral-Derivative (PID) control

Goal: study basic features and capabilities of PID control
(industry standard since 1950’s): arbitrary pole placement;
reference tracking; disturbance rejection

Reading: FPE, Sections 4.1-4.3; lab manual
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Recap: Benefits of Feedback Control

From last lecture: feedback control
» reduces steady-state error to disturbances

» reduces steady-state sensitivity to model uncertainty
(parameter variations)

» improves time response
So far, we have only looked at proportional feedback (scalar

gain) and Ist-order plants. Now we will add two more basic
ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

1
s2—1

G(s) =

» unstable: poles at s = £1 (one pole in RHP)
» 2nd-order

— not as easy as DC motor, which was 1st-order and stable.
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Proportional Feedback

R OB |y

Kp — “proportional gain” (P-gain) U=KpFE

Let’s try to find a value of Kp that would stabilize the system:

Kp
Y o o211 Kp
R Kp ~ $2-1+4K
R 14_82_131 s + Kp

— the polynomial in the denominator has zero coefficient of s
— necessary condition for stability is not satisfied.

The feedback system is not stable for any value of Kp!!
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Derivative Feedback

Let’s feed the derivative of the error, multiplied by some gain,
back into the plant:

E
R—OE s |2 — Y

Motivation: derivative = rate of change; faster change —-
more control needed.

Caveat: multiplication by s is not a causal element (why?)

Derivative action and lack of causality: recall

&(t) ~ W (for small §)

—if 6 > 0, e(t + 0) is in the future of e(¢)!!
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Disclaimer 1 about D-Feedback: Lack of Causality

Consider some state-space models:
i = Az + Bu sX = AX + BU (s —A)X = BU
Y CB q(s)

Y ’ U s—A p(s)

deg(q) < deg(p) — strictly proper transfer function

(s—A)X =BU
- _ CB
& = Ax + Bu sX =AX+BU vy = AU+DU

.
y = Cx + Du Y=CX+DU _CB+D(5—A)U:(1(5)

s—A p(s)
deg(q) = deg(p) — proper transfer function

Causal systems have proper transfer functions.
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But if u = Ké, then U = KsEE — g:ngﬁ
E p(s)

deg(q) > deg(p)— improper system (lack of causality)

So, F — KpskFE is not implementable directly, but we can
implement an approximation, e.g.

Kpas
a-+s

— Kps as a — oo

(this can be done using op-amps).

Alternatively, we can approximate derivative action using finite
differences: (t+ ) )

. e(t+0)—e

éln) = =AY,

but then we must tolerate delays — must wait until time ¢ + d
to issue a control signal meant for time ¢.
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Disclaimer 2 about D-Feedback: Noise Amplification

Differentiators amplify noise (noise — rapid changes in the
reference).

In the lab, D-feedback is implemented differently, in the
feedback path. This way, we avoid differentiating the reference,
which may be rapidly changing:

+
R—()—| G(s) Y Before: L — BDsGE)
R 1+ KpsG(s)
Y G(s)
Now: —=-———~"——
Kps R 1+ KpsG(s)

Poles: 1+ KpsG(s) =0
— same poles, but different zeros.

Now the reference signal is smoothed out by the plant G(s)
before entering the differentiator, which minimizes distortion
due to noise.
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Back to Analysis: Derivative Feedback
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Kps
Y_ 82_1 o KDS
B Kns <2 _
R 14 2D s*+ Kps—1
s —1

— still not good: the denominator has a negative coefficient
—> not stable; also we have picked up a zero at the origin.
But:
» P-control affected the coefficient of s” (constant term)
» D-control affected the coefficient of s

— let’s combine them!!
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Kp + Kps
y s2—1 B Kp + Kps
R Kp+ Kps 24+ Kps+ Kp — 1
1+ s2—1

— now, if we set Kp > 0 and Kp > 1, then the transfer
function will be stable.

Even more: by choosing Kp and Kp, we can arbitrarily assign

coefficients of the denominator, and therefore the poles of the
transfer function:

PD control gives us arbitrary pole placement!!
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By choosing Kp, Kp, we can achieve arbitrary pole placement!!

Y Kp + Kps

E_S2+KDS—|—KP—1
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By choosing Kp, Kp, we can achieve arbitrary pole placement!!

Y Kp + Kps

E_S2+KDS—|—KP—1

Also note that the addition of P-gain moves the zero:

K
Kps+Kp=0  LHP zero at — K—P

D
Y K;
But what’s missing? DC gain = = - e i :

s=0

£1

— can’t have perfect tracking of constant reference.
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Let us try
K .
U=|(Kp+Kps+— | F — the classic three-term controller
s

In fact, let’s also throw in a constant disturbance:
w

RJ@E,lKPJrKDerKI/S %4' 32171 Y

We will see that, with PID control, the goals of
» tracking a constant reference r
> rejecting a constant disturbance w

can be accomplished in one shot.
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Simplify:
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1 K;
Y= 5 —(U+W), U=<KP+KD3+;>(R—Y)
Kp—l—KDS-i-ﬁ 1

Y = s (R_Y
S0 27 (R )—1-32_1

w
Simplify:
2 Ki
(s*=1)Y = <KP+KD3+S> (R-Y)+W
K K
(82—1+KP+KDS+SI>Y: <KP+KD8+SI>R+W

(s — s+ Kps + Kps®> + K1)Y = (Kps + Kps> + K))R + Ws
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w

+ ~E U *l
R@—{ Kp + Kps + Ki/s |—+»QH

|

s2—1

I

(s — s+ Kps + Kps* + K1)Y = (Kps + Kps®> + K1)R+Ws

Therefore,

. KDS2 + KPS + KI

B S3+KDS2—|—(KP — 1)S—|—KI
S

w
- 83+KDS2—|—(KP — 1)S—|—KI
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W
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. KDSQ—FKPS—FKI
B s3 + KD82 + (Kp — 1)8 + KI

+ > W
s34+ Kps? + (Kp — 1)s + K|

Stability:
» need Kp >0, Kp > 1, K1 > 0 (necessary condition)
and Kp(Kp — 1) > K1 (Routh-Hurwitz for 3rd-order)

» can still assign coefficients arbitrarily by choosing
Kp, K1, Kp
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Reference tracking:
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DC gain(R —»Y) =
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+ > W
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Reference tracking:

. KDS2 + KPS + KI

DC R—Y)= -1
gain(f = Y) = Gk T s+ ks T

S
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W
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. KD52+KPS+KI
N s3 + KD82 + (Kp — 1)8 + KI

+ > W
s3 Sl KD82 ol (Kp - 1)8 + KI

Reference tracking:

. KDS2 +KPS+KI

DC R—Y)= -1
gain(R V) = o (Kp — 1)s + Kps® + K;

S

— so0, with the addition of I-feedback, we remove earlier
limitation and achieve perfect tracking
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E U

1

RJ’O—’ KP+KDS+KI/S

s2—1

KDS2 + KPS + KI

N 83 +KD82 —f- (Kp — 1)S+KI

Y

+

Disturbance rejection:

S

DC gain(W —=Y) =

s3 =+ (Kp — 1)5 —+ KD82 + K7
s

w
83 + KD82 + (Kp — 1)8 + KI

=0
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. KDS2 -+ KPS + KI
N 83 + KD82 —f- (Kp — ].)S + KI

o ° %
s3 + KD82 + (Kp — 1)8 + KI

Disturbance rejection:

S
. Y) = -
DC gain(W —Y) s34+ (Kp —1)s+ Kps? + K -0 ’
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RJ.OE.KPJFKDSJFKI/S U 321—1 Y

. KDS2 -+ KPS + KI
N 83 + KD82 —f- (Kp — ].)S + KI

o ° %
s3 + KD82 + (Kp — 1)8 + KI

Disturbance rejection:

s
DC gai Y)= B
C gain(W —Y) $3 + (Kp —1)s + Kps? + K —0 0

— so, integral gain also gives complete attenuation of constant
disturbances!!
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Wind-Up Phenomenon

saturation

E U
R—»+Q—» 1/s [ —| P Y

When the actuator saturates, the error continues to be
integrated, resulting in large overshoot.

We say that the integrator “winds up:” the error may be small,
but its integrated past history builds up.

There are various anti-windup schemes to deal with this
practically important issue. (Essentially, we attempt to detect
the onset of saturation and turn the integrator off.)



System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.



System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

rOE kY p v




System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

U

R0 K

P

+k
Consider the reference r(t) = i

1(t) +— R(s)

Skl



System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

RO kY p v

tk 1

Consider the reference r(t) = El(t) +— R(s) = T
. 1 1 1

Error signal: £ = T KPR =1 KPP H




System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

U
rOE kY P v

tk 1

Consider the reference r(t) = El(t) +— R(s) = T
. 1 1 1

Error signal: £ = T KPR =1 KPP H

FVT gives (assuming stability):




System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

U
rOE kY P v

tk 1

Consider the reference r(t) = El(t) +— R(s) = T
. 1 1 1

Error signal: £ = T KPR =1 KPP H

FVT gives (assuming stability):

e(o0)



System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

U
rOE kY P v

tk 1

Consider the reference r(t) = El(t) +— R(s) = T
. 1 1 1

Error signal: £ = T KPR =1 KPP H

FVT gives (assuming stability):

e(o00) = sE(s) o
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System Type

The fact that 1/s leads to perfect tracking of constant
references and perfect rejection of constant disturbances is a
special case of a more general analysis.

rOE kY p v

tk 1

Consider the reference r(t) = El(t) +— R(s) = T
. 1 1 1

Error signal: £ = T KPR =1 KPP H

FVT gives (assuming stability):

1 1

e(o0) =sBG)| =TT KPS

s=0

— let’s see how the forward gain affects tracking performance.
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RO K P v

System type: the number n of poles the forward-loop
transfer function K P has at the origin. It is the degree of
the lowest-degree polynomial that cannot be tracked in

feedback with zero steady-state error.

Note: the system type is calculated from the forward-loop
transfer function, although the conclusions we will draw are

about the closed-loop system.
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1 1 11
R(s) = G T KP T 11 Kpsti
11
p— E -_—e,— e
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— let’s see how forward gain K P affects tracking performance.
Ky

Let’s suppose that K P has nth-order pole at s =0: KP = —
s
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s
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K
Let’s suppose that K P has nth-order pole at s =0: KP = —:
s
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= = — ?
sE(s)= i+ %) T what about sE(s) o

Recall: reference r(t) is a polynomial of degree k

Three cases to consider —
> n >k e(co) =0 perfect tracking
» n=k: e(co) = const # 0 imperfect tracking

> n<k:e(oo) =00 no tracking
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R"Q—’K P Y

System type is the degree of the lowest-degree polynomial that
cannot be tracked in feedback with zero steady-state error.

» Type 0: no pole at the origin. This is what we had without
the I-gain: nonzero SS error to constant references.

» Type 1: a single pole at the origin. This is what we get
with I-gain: can track (respectively, reject) constant
references (respectively, disturbances) with zero error.

» can check that we have a nonzero (but finite) error when
tracking ramp references
» Type 2: a double pole at the origin. Can track ramp
references without error, but not t2,¢3, ...
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PID Control: Summary & Further Comments

P-gain simplest to implement, but not always sufficient for
stabilization

D-gain helps achieve stability, improves time response (more
control over pole locations)

» arbitrary pole placement only valid for 2nd-order response;
in general, we still have control over two dominant poles

» cannot be implemented directly, so need approximate
implementation; D-gain also amplifies noise

I-gain essential for perfect steady-state tracking of constant
reference and rejection of constant disturbance
» but 1/s is not a stable element by itself, so one must be
careful: it can destabilize the system if the feedback loop is
broken (integrator wind-up)



