Plan of the Lecture

- ▶ Review: basic properties and benefits of feedback control
- ► Today's topic: introduction to Proportional-Integral-Derivative (PID) control

Plan of the Lecture

- ▶ Review: basic properties and benefits of feedback control
- ► Today's topic: introduction to Proportional-Integral-Derivative (PID) control

Goal: study basic features and capabilities of PID control (industry standard since 1950's): arbitrary pole placement; reference tracking; disturbance rejection

Plan of the Lecture

- ▶ Review: basic properties and benefits of feedback control
- ► Today's topic: introduction to Proportional-Integral-Derivative (PID) control

Goal: study basic features and capabilities of PID control (industry standard since 1950's): arbitrary pole placement; reference tracking; disturbance rejection

Reading: FPE, Sections 4.1–4.3; lab manual

From last lecture: feedback control

- reduces steady-state error to disturbances
- ▶ reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

From last lecture: feedback control

- reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- improves time response

So far, we have only looked at *proportional feedback* (scalar gain) and 1st-order plants. Now we will add two more basic ingredients and examine their effect on higher-order systems.

From last lecture: feedback control

- ▶ reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

So far, we have only looked at *proportional feedback* (scalar gain) and 1st-order plants. Now we will add two more basic ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

$$G(s) = \frac{1}{s^2 - 1}$$

From last lecture: feedback control

- reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

So far, we have only looked at *proportional feedback* (scalar gain) and 1st-order plants. Now we will add two more basic ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

$$G(s) = \frac{1}{s^2 - 1}$$

• unstable: poles at $s = \pm 1$ (one pole in RHP)

From last lecture: feedback control

- reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

So far, we have only looked at *proportional feedback* (scalar gain) and 1st-order plants. Now we will add two more basic ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

$$G(s) = \frac{1}{s^2 - 1}$$

- unstable: poles at $s = \pm 1$ (one pole in RHP)
- ▶ 2nd-order

From last lecture: feedback control

- reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

So far, we have only looked at *proportional feedback* (scalar gain) and 1st-order plants. Now we will add two more basic ingredients and examine their effect on higher-order systems.

We will consider the following plant transfer function:

$$G(s) = \frac{1}{s^2 - 1}$$

- unstable: poles at $s = \pm 1$ (one pole in RHP)
- ▶ 2nd-order
- not as easy as DC motor, which was 1st-order and stable.

$$\frac{Y}{R}$$

$$\frac{Y}{R} = \frac{\frac{K_{\rm P}}{s^2 - 1}}{1 + \frac{K_{\rm P}}{s^2 - 1}}$$

$$\frac{Y}{R} = \frac{\frac{K_{\rm P}}{s^2 - 1}}{1 + \frac{K_{\rm P}}{s^2 - 1}} = \frac{K_{\rm P}}{s^2 - 1 + K_{\rm P}}$$

Let's try to find a value of K_P that would stabilize the system:

$$\frac{Y}{R} = \frac{\frac{K_{\rm P}}{s^2 - 1}}{1 + \frac{K_{\rm P}}{s^2 - 1}} = \frac{K_{\rm P}}{s^2 - 1 + K_{\rm P}}$$

— the polynomial in the denominator has zero coefficient of s

Let's try to find a value of K_P that would stabilize the system:

$$\frac{Y}{R} = \frac{\frac{K_{\rm P}}{s^2 - 1}}{1 + \frac{K_{\rm P}}{s^2 - 1}} = \frac{K_{\rm P}}{s^2 - 1 + K_{\rm P}}$$

— the polynomial in the denominator has zero coefficient of s \implies necessary condition for stability is not satisfied.

Let's try to find a value of K_P that would stabilize the system:

$$\frac{Y}{R} = \frac{\frac{K_{\rm P}}{s^2 - 1}}{1 + \frac{K_{\rm P}}{s^2 - 1}} = \frac{K_{\rm P}}{s^2 - 1 + K_{\rm P}}$$

— the polynomial in the denominator has zero coefficient of s \implies necessary condition for stability is not satisfied.

The feedback system is not stable for any value of $K_P!!$

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Motivation: derivative = rate of change; faster change \Longrightarrow more control needed.

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Motivation: derivative = rate of change; faster change \Longrightarrow more control needed.

Caveat: multiplication by s is not a causal element

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Motivation: derivative = rate of change; faster change \Longrightarrow more control needed.

Caveat: multiplication by s is not a causal element (why?)

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Motivation: derivative = rate of change; faster change \Longrightarrow more control needed.

Caveat: multiplication by s is not a causal element (why?)

Derivative action and lack of causality: recall

$$\dot{e}(t) \approx \frac{e(t+\delta) - e(t)}{\delta}$$
 (for small δ)

Let's feed the *derivative of the error*, multiplied by some gain, back into the plant:

Motivation: derivative = rate of change; faster change \Longrightarrow more control needed.

Caveat: multiplication by s is not a causal element (why?)

Derivative action and lack of causality: recall

$$\dot{e}(t) \approx \frac{e(t+\delta) - e(t)}{\delta}$$
 (for small δ)

— if $\delta > 0$, $e(t + \delta)$ is in the future of e(t)!!

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$
 $y = Cx$ $Y = CX$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$
 $y = Cx$ $Y = CX$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A}$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$ $\deg(q) < \deg(p)$ — strictly proper transfer function

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$ $\deg(q) < \deg(p)$ — strictly proper transfer function

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$ $\deg(q) < \deg(p)$ — strictly proper transfer function

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$
 $y = Cx + Du$ $Y = CX + DU$

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

deg(q) < deg(p) — strictly proper transfer function

$$\dot{x} = Ax + Bu \qquad sX = AX + BU$$

$$y = Cx + Du \qquad Y = CX + DU$$

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$ $\deg(q) < \deg(p)$ — strictly proper transfer function

(s-A)X = BU

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $Y = \frac{\dot{C}B}{s - A}U + DU$ $Y = CX + DU$

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

 $\deg(q) < \deg(p)$ — strictly proper transfer function

$$\dot{x} = Ax + Bu \qquad sX = AX + BU \qquad Y = \frac{CB}{s - A}U + DU$$

$$y = Cx + Du \qquad Y = CX + DU \qquad = \frac{CB + D(s - A)}{s - A}U$$

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

deg(q) < deg(p) — strictly proper transfer function

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$sX = AX + BU$$

$$Y = \frac{CB}{s - A}U + DU$$

$$Y = CX + DU$$

$$= \frac{CB + D(s - A)}{s - A}U \equiv \frac{q(s)}{p(s)}$$

Disclaimer 1 about D-Feedback: Lack of Causality

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

deg(q) < deg(p) — strictly proper transfer function

$$\dot{x} = Ax + Bu \qquad sX = AX + BU \qquad Y = \frac{CB}{s - A}U + DU$$

$$y = Cx + Du \qquad Y = CX + DU$$

$$= \frac{CB + D(s - A)}{s - A}U \equiv \frac{q(s)}{p(s)}$$

deg(q) = deg(p) — proper transfer function

Disclaimer 1 about D-Feedback: Lack of Causality

Consider some state-space models:

$$\dot{x} = Ax + Bu$$
 $sX = AX + BU$ $(s - A)X = BU$ $y = Cx$ $Y = CX$ $\frac{Y}{U} = \frac{CB}{s - A} \equiv \frac{q(s)}{p(s)}$

 $\deg(q) < \deg(p)$ — strictly proper transfer function

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$sX = AX + BU$$

$$Y = \frac{CB}{s - A}U + DU$$

$$Y = CX + DU$$

$$= \frac{CB + D(s - A)}{s - A}U \equiv \frac{q(s)}{p(s)}$$

deg(q) = deg(p) — proper transfer function

Causal systems have proper transfer functions.

But if $u = K\dot{e}$, then U = KsE

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

$$\deg(q) > \deg(p)$$

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

deg(q) > deg(p) - improper system (lack of causality)

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

 $\deg(q) > \deg(p)$ — $improper\ system\ (lack\ of\ causality)$

So, $E \mapsto K_{\rm D} s E$ is not implementable directly, but we can implement an approximation, e.g.

$$\frac{K_{\mathrm{D}}as}{a+s} \longrightarrow K_{\mathrm{D}}s$$
 as $a \to \infty$

(this can be done using op-amps).

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

So, $E \mapsto K_{\mathrm{D}}sE$ is not implementable directly, but we can implement an approximation, e.g.

$$\frac{K_{\mathrm{D}}as}{a+s} \longrightarrow K_{\mathrm{D}}s$$
 as $a \to \infty$

(this can be done using op-amps).

Alternatively, we can approximate derivative action using finite differences:

$$\dot{e}(t) \approx \frac{e(t+\delta) - e(t)}{\delta},$$

But if
$$u = K\dot{e}$$
, then $U = KsE \implies \frac{U}{E} = Ks = \frac{q(s)}{p(s)}$

 $\deg(q) > \deg(p) - \underbrace{\mathit{improper system}}_{} (\text{lack of causality})$

So, $E \mapsto K_{\mathrm{D}}sE$ is not implementable directly, but we can implement an approximation, e.g.

$$\frac{K_{\mathrm{D}}as}{a+s} \longrightarrow K_{\mathrm{D}}s$$
 as $a \to \infty$

(this can be done using op-amps).

Alternatively, we can approximate derivative action using finite differences:

$$\dot{e}(t) \approx \frac{e(t+\delta) - e(t)}{\delta},$$

but then we must tolerate delays — must wait until time $t + \delta$ to issue a control signal meant for time t.

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

In the lab, D-feedback is implemented differently, in the feedback path. This way, we avoid differentiating the reference, which may be rapidly changing:

— same poles, but different zeros.

Differentiators amplify noise (noise \longrightarrow rapid changes in the reference).

In the lab, D-feedback is implemented differently, in the feedback path. This way, we avoid differentiating the reference, which may be rapidly changing:

— same poles, but different zeros.

Now the reference signal is *smoothed out* by the plant G(s) before entering the differentiator, which minimizes distortion due to noise.

$$R \xrightarrow{+} E \xrightarrow{K_{D}s} U \xrightarrow{1} \xrightarrow{s^{2}-1} Y$$

$$\frac{Y}{s} = \frac{K_{D}s}{s^{2}-1}$$

$$R \xrightarrow{+} E \xrightarrow{K_{D}s} U \xrightarrow{\frac{1}{s^{2}-1}} Y$$

$$\frac{Y}{R} = \frac{\frac{K_{D}s}{s^{2}-1}}{1 + \frac{K_{D}s}{s^{2}-1}} = \frac{K_{D}s}{s^{2} + K_{D}s - 1}$$

— still not good: the denominator has a negative coefficient ⇒ not stable; also we have picked up a zero at the origin.

— still not good: the denominator has a negative coefficient ⇒ not stable; also we have picked up a zero at the origin.

But:

— still not good: the denominator has a negative coefficient \implies not stable; also we have picked up a zero at the origin.

But:

▶ P-control affected the coefficient of s^0 (constant term)

$$R \xrightarrow{+} E \xrightarrow{K_{D}s} U \xrightarrow{1} \xrightarrow{s^{2}-1} Y$$

$$\frac{Y}{R} = \frac{\frac{K_{D}s}{s^{2}-1}}{1 + \frac{K_{D}s}{s^{2}-1}} = \frac{K_{D}s}{s^{2} + K_{D}s - 1}$$

— still not good: the denominator has a negative coefficient ⇒ not stable; also we have picked up a zero at the origin.

But:

- ▶ P-control affected the coefficient of s^0 (constant term)
- \triangleright D-control affected the coefficient of s

$$R \xrightarrow{+} E \xrightarrow{K_{D}s} U \xrightarrow{\frac{1}{s^{2}-1}} Y$$

$$\frac{Y}{R} = \frac{\frac{K_{D}s}{s^{2}-1}}{1 + \frac{K_{D}s}{s^{2}-1}} = \frac{K_{D}s}{s^{2} + K_{D}s - 1}$$

— still not good: the denominator has a negative coefficient ⇒ not stable; also we have picked up a zero at the origin.

But:

- ▶ P-control affected the coefficient of s^0 (constant term)
- ▶ D-control affected the coefficient of s
- let's combine them!!

 $\frac{1}{F}$

$$R \xrightarrow{+} E \xrightarrow{K_{\rm P} + K_{\rm D} s} U \xrightarrow{1 \atop s^2 - 1} Y$$

$$\frac{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}$$

$$R \xrightarrow{+} E \xrightarrow{K_{\rm P} + K_{\rm D}s} U \xrightarrow{1} \xrightarrow{s^2 - 1} Y$$

$$\frac{Y}{R} = \frac{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}{1 + \frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}} = \frac{K_{\rm P} + K_{\rm D}s}{s^2 + K_{\rm D}s + K_{\rm P} - 1}$$

$$R \xrightarrow{+} E \xrightarrow{K_{\rm P} + K_{\rm D}s} U \xrightarrow{1} \xrightarrow{s^2 - 1} Y$$

$$\frac{Y}{R} = \frac{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}{1 + \frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}} = \frac{K_{\rm P} + K_{\rm D}s}{s^2 + K_{\rm D}s + K_{\rm P} - 1}$$

— now, if we set $K_D > 0$ and $K_P > 1$, then the transfer function will be stable.

$$\frac{Y}{R} = \frac{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}{1 + \frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}} = \frac{K_{\rm P} + K_{\rm D}s}{s^2 + K_{\rm D}s + K_{\rm P} - 1}$$

— now, if we set $K_D > 0$ and $K_P > 1$, then the transfer function will be stable.

Even more: by choosing $K_{\rm P}$ and $K_{\rm D}$, we can *arbitrarily* assign coefficients of the denominator, and therefore the poles of the transfer function:

$$\frac{Y}{R} = \frac{\frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}}{1 + \frac{K_{\rm P} + K_{\rm D}s}{s^2 - 1}} = \frac{K_{\rm P} + K_{\rm D}s}{s^2 + K_{\rm D}s + K_{\rm P} - 1}$$

— now, if we set $K_D > 0$ and $K_P > 1$, then the transfer function will be stable.

Even more: by choosing $K_{\rm P}$ and $K_{\rm D}$, we can *arbitrarily* assign coefficients of the denominator, and therefore the poles of the transfer function:

PD control gives us arbitrary pole placement!!

By choosing K_P, K_D , we can achieve arbitrary pole placement!!

By choosing K_P , K_D , we can achieve arbitrary pole placement!! Also note that the addition of P-gain moves the zero:

By choosing K_P , K_D , we can achieve arbitrary pole placement!! Also note that the addition of P-gain moves the zero:

$$K_{\rm D}s + K_P = 0$$
 LHP zero at $-\frac{K_{\rm P}}{K_{\rm D}}$

Proportional-Derivative (PD) Control

By choosing K_P, K_D , we can achieve arbitrary pole placement!! Also note that the addition of P-gain moves the zero:

$$K_{\rm D}s + K_P = 0$$
 LHP zero at $-\frac{K_{\rm P}}{K_{\rm D}}$

But what's missing?

Proportional-Derivative (PD) Control

$$R \xrightarrow{F} E \xrightarrow{K_{P} + K_{D}s} U \xrightarrow{1} \xrightarrow{s^{2} - 1} Y$$

$$\frac{Y}{R} = \frac{K_{P} + K_{D}s}{s^{2} + K_{D}s + K_{P} - 1}$$

By choosing K_P , K_D , we can achieve arbitrary pole placement!! Also note that the addition of P-gain moves the zero:

$$K_{\rm D}s + K_P = 0$$
 LHP zero at $-\frac{K_{\rm P}}{K_{\rm D}}$

But what's missing? DC gain =
$$\frac{Y}{R}$$
 = $\frac{K_P}{K_P - 1} \neq 1$

Proportional-Derivative (PD) Control

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s} U \xrightarrow{\frac{1}{s^{2} - 1}} Y$$

$$\frac{Y}{R} = \frac{K_{P} + K_{D}s}{s^{2} + K_{D}s + K_{P} - 1}$$

By choosing K_P , K_D , we can achieve arbitrary pole placement!! Also note that the addition of P-gain moves the zero:

$$K_{\rm D}s + K_P = 0$$
 LHP zero at $-\frac{K_{\rm P}}{K_{\rm D}}$

But what's missing? DC gain =
$$\frac{Y}{R}\Big|_{r=0} = \frac{K_{\rm P}}{K_{\rm P}-1} \neq 1$$

— can't have perfect tracking of constant reference.

Let us try

$$U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)E$$
 – the classic three-term controller

Let us try

$$U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)E$$
 – the classic three-term controller

In fact, let's also throw in a constant disturbance:

Let us try

$$U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)E$$
 – the classic three-term controller

In fact, let's also throw in a constant disturbance:

We will see that, with PID control, the goals of

- \triangleright tracking a constant reference r
- ightharpoonup rejecting a constant disturbance w can be accomplished in one shot.

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{1}/s} U \xrightarrow{+} \xrightarrow{1} Y$$

$$Y = \frac{1}{s^2 - 1}(U + W), \qquad U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)(R - Y)$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} 1 \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{1}{s^2 - 1}(U + W), \qquad U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)(R - Y)$$

so
$$Y = \frac{K_{\mathrm{P}} + K_{\mathrm{D}}s + \frac{K_{\mathrm{I}}}{s}}{s^2 - 1}(R - Y) + \frac{1}{s^2 - 1}W$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} \xrightarrow{1} Y$$

$$Y = \frac{1}{s^{2} - 1} (U + W), \qquad U = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right) (R - Y)$$

so
$$Y = \frac{K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}}{s^2 - 1}(R - Y) + \frac{1}{s^2 - 1}W$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} 1 \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{1}{s^2 - 1}(U + W), \qquad U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)(R - Y)$$

so $Y = \frac{K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}}{s^2 - 1}(R - Y) + \frac{1}{s^2 - 1}W$

so
$$Y = \frac{s^2 - 1}{s^2 - 1} (R - Y) + \frac{s^2 - 1}{s^2 - 1} W$$

$$(s^2 - 1)Y = \left(K_P + K_D s + \frac{K_I}{s}\right)(R - Y) + W$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} \xrightarrow{I} Y$$

$$Y = \frac{1}{s^2 - 1}(U + W), \qquad U = \left(K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}\right)(R - Y)$$

so
$$Y = \frac{K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}}{s^2 - 1}(R - Y) + \frac{1}{s^2 - 1}W$$

$$(s^{2} - 1)Y = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right)(R - Y) + W$$
$$\left(s^{2} - 1 + K_{P} + K_{D}s + \frac{K_{I}}{s}\right)Y = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right)R + W$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} \underbrace{\frac{1}{s^{2} - 1}} Y$$

$$Y = \frac{1}{s^{2} - 1}(U + W), \qquad U = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right)(R - Y)$$

so
$$Y = \frac{K_{\rm P} + K_{\rm D}s + \frac{K_{\rm I}}{s}}{s^2 - 1}(R - Y) + \frac{1}{s^2 - 1}W$$

$$(s^{2} - 1)Y = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right)(R - Y) + W$$

$$\left(s^{2} - 1 + K_{P} + K_{D}s + \frac{K_{I}}{s}\right)Y = \left(K_{P} + K_{D}s + \frac{K_{I}}{s}\right)R + W$$

$$(s^{3} - s + K_{P}s + K_{D}s^{2} + K_{I})Y = (K_{P}s + K_{D}s^{2} + K_{I})R + Ws$$

$$(s^{3} - s + K_{P}s + K_{D}s^{2} + K_{I})Y = (K_{P}s + K_{D}s^{2} + K_{I})R + Ws$$

$$(s^{3} - s + K_{P}s + K_{D}s^{2} + K_{I})Y = (K_{P}s + K_{D}s^{2} + K_{I})R + Ws$$

Therefore,

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} \xrightarrow{1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Stability:

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Stability:

▶ need $K_{\rm D} > 0$, $K_{\rm P} > 1$, $K_{\rm I} > 0$ (necessary condition) and $K_{\rm D}(K_{\rm P} - 1) > K_{\rm I}$ (Routh–Hurwitz for 3rd-order)

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Stability:

- ▶ need $K_D > 0$, $K_P > 1$, $K_I > 0$ (necessary condition) and $K_D(K_P 1) > K_I$ (Routh–Hurwitz for 3rd-order)
- ► can still assign coefficients arbitrarily by choosing $K_{\rm P}, K_{\rm L}, K_{\rm D}$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{+} 1 \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Reference tracking:

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Reference tracking:

DC gain $(R \to Y)$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R$$
$$+ \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Reference tracking:

DC gain
$$(R \to Y) = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + (K_{\rm P} - 1)s + K_{\rm D}s^2 + K_{\rm I}}\Big|_{s=0}$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Reference tracking:

DC gain
$$(R \to Y) = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + (K_{\rm P} - 1)s + K_{\rm D}s^2 + K_{\rm I}} \bigg|_{s=0} = 1$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Reference tracking:

DC gain
$$(R \to Y) = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + (K_{\rm P} - 1)s + K_{\rm D}s^2 + K_{\rm I}} \bigg|_{s=0} = 1$$

— so, with the addition of I-feedback, we remove earlier limitation and achieve *perfect tracking*!

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} \xrightarrow{s^{2} - 1} Y$$

$$R \xrightarrow{+} \xrightarrow{E} K_{P} + K_{D}s + K_{I}/s \xrightarrow{U} \xrightarrow{1} \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{K_{D}s^{2} + K_{P}s + K_{I}}{s^{3} + K_{D}s^{2} + (K_{P} - 1)s + K_{I}}R$$

 $+\frac{s}{s^3+K_{\rm D}s^2+(K_{\rm P}-1)s+K_{\rm I}}W$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Disturbance rejection:

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} \xrightarrow{s^{2} - 1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Disturbance rejection:

DC gain $(W \to Y)$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Disturbance rejection:

DC gain
$$(W \to Y) = \frac{s}{s^3 + (K_P - 1)s + K_D s^2 + K_I} \bigg|_{s=0}$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} Y$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Disturbance rejection:

DC gain
$$(W \to Y) = \frac{s}{s^3 + (K_P - 1)s + K_D s^2 + K_I} \bigg|_{s=0} = 0$$

$$R \xrightarrow{+} E \xrightarrow{K_{P} + K_{D}s + K_{I}/s} U \xrightarrow{1} x^{2} - 1$$

$$Y = \frac{K_{\rm D}s^2 + K_{\rm P}s + K_{\rm I}}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}R + \frac{s}{s^3 + K_{\rm D}s^2 + (K_{\rm P} - 1)s + K_{\rm I}}W$$

Disturbance rejection:

DC gain
$$(W \to Y) = \frac{s}{s^3 + (K_P - 1)s + K_D s^2 + K_I} \bigg|_{s=0} = 0$$

— so, integral gain also gives *complete attenuation* of *constant* disturbances!!

Wind-Up Phenomenon

When the actuator saturates, the error continues to be integrated, resulting in large overshoot.

Wind-Up Phenomenon

When the actuator saturates, the error continues to be integrated, resulting in large overshoot.

We say that the integrator "winds up:" the error may be small, but its integrated past history builds up.

Wind-Up Phenomenon

When the actuator saturates, the error continues to be integrated, resulting in large overshoot.

We say that the integrator "winds up:" the error may be small, but its integrated past history builds up.

There are various anti-windup schemes to deal with this practically important issue. (Essentially, we attempt to detect the onset of saturation and turn the integrator off.)

System Type

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

System Type

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference $r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$$

Error signal: $E = \frac{1}{1 + KP} R = \frac{1}{1 + KP} \frac{1}{s^{k+1}}$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t)=\frac{t^k}{k!}1(t) \longleftrightarrow R(s)=\frac{1}{s^{k+1}}$$

Error signal: $E=\frac{1}{1+KP}R=\frac{1}{1+KP}\frac{1}{s^{k+1}}$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$$

Error signal: $E = \frac{1}{1+KP}R = \frac{1}{1+KP}\frac{1}{s^{k+1}}$

$$e(\infty)$$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$$

Error signal: $E = \frac{1}{1 + KP} R = \frac{1}{1 + KP} \frac{1}{s^{k+1}}$

$$e(\infty) = sE(s)\Big|_{s=0}$$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$$

Error signal: $E = \frac{1}{1 + KP} R = \frac{1}{1 + KP} \frac{1}{s^{k+1}}$

$$e(\infty) = sE(s)\Big|_{s=0} = \frac{1}{1 + KP} \frac{1}{s^k}\Big|_{s=0}$$

The fact that 1/s leads to perfect tracking of constant references and perfect rejection of constant disturbances is a special case of a more general analysis.

Consider the reference
$$r(t) = \frac{t^k}{k!} 1(t) \iff R(s) = \frac{1}{s^{k+1}}$$

Error signal: $E = \frac{1}{1 + KP} R = \frac{1}{1 + KP} \frac{1}{s^{k+1}}$

FVT gives (assuming stability):

$$e(\infty) = sE(s)\Big|_{s=0} = \frac{1}{1 + KP} \frac{1}{s^k}\Big|_{s=0}$$

— let's see how the forward gain affects tracking performance.

System type: the number n of poles the forward-loop transfer function KP has at the origin. It is the degree of the lowest-degree polynomial that cannot be tracked in feedback with zero steady-state error.

System type: the number n of poles the forward-loop transfer function KP has at the origin. It is the degree of the lowest-degree polynomial that cannot be tracked in feedback with zero steady-state error.

Note: the system type is calculated from the *forward-loop* transfer function, although the conclusions we will draw are about the *closed-loop system*.

— let's see how forward gain KP affects tracking performance.

— let's see how forward gain KP affects tracking performance.

Let's suppose that KP has nth-order pole at s=0:

— let's see how forward gain KP affects tracking performance.

— let's see how forward gain KP affects tracking performance.

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

sE(s)

— let's see how forward gain KP affects tracking performance.

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{e^n}\right)s^k}$$

$$R \xrightarrow{+} E \xrightarrow{K} U \xrightarrow{P} Y$$

$$R(s) = \frac{1}{s^{k+1}} \implies E = \frac{1}{1+KP}R = \frac{1}{1+KP}\frac{1}{s^{k+1}}$$

$$e(\infty) = sE(s)\Big|_{s=0} = \frac{1}{1+KP}\frac{1}{s^k}\Big|_{s=0}$$

— let's see how forward gain KP affects tracking performance.

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0}$$

$$R \xrightarrow{+} E \xrightarrow{K} U \xrightarrow{P} Y$$

$$R(s) = \frac{1}{s^{k+1}} \implies E = \frac{1}{1+KP}R = \frac{1}{1+KP}\frac{1}{s^{k+1}}$$

$$e(\infty) = sE(s)\Big|_{s=0} = \frac{1}{1+KP}\frac{1}{s^k}\Big|_{s=0}$$

— let's see how forward gain KP affects tracking performance.

$$sE(s) = \frac{1}{(1 + \frac{K_0}{s}) s^k} = \frac{s^{n-k}}{s^n + K_0}$$
 — what about $sE(s) \Big|_{s=0}$?

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0}$$
 — what about $sE(s)\Big|_{s=0}$?

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0}$$
 — what about $sE(s)\Big|_{s=0}$?

Recall: reference r(t) is a polynomial of degree k

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

Three cases to consider —

ightharpoonup n > k:

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

$$n > k : e(\infty) = 0$$

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

▶
$$n > k$$
: $e(\infty) = 0$ perfect tracking

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking
- ightharpoonup n = k:

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking
- ▶ n = k: $e(\infty) = \text{const} \neq 0$ imperfect tracking

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking
- ▶ n = k: $e(\infty) = \text{const} \neq 0$ imperfect tracking
- ▶ *n* < *k*:

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking
- ▶ n = k: $e(\infty) = \text{const} \neq 0$ imperfect tracking
- $n < k : e(\infty) = \infty$

Let's suppose that KP has nth-order pole at s=0: $KP=\frac{K_0}{s^n}$

$$sE(s) = \frac{1}{\left(1 + \frac{K_0}{s^n}\right)s^k} = \frac{s^{n-k}}{s^n + K_0} \quad \text{what about } sE(s)\Big|_{s=0}?$$

Recall: reference r(t) is a polynomial of degree k

- ▶ n > k: $e(\infty) = 0$ perfect tracking
- ▶ n = k: $e(\infty) = \text{const} \neq 0$ imperfect tracking
- ▶ n < k: $e(\infty) = \infty$ no tracking

System type is the degree of the lowest-degree polynomial that cannot be tracked *in feedback* with zero steady-state error.

▶ Type 0: no pole at the origin. This is what we had without the I-gain: nonzero SS error to constant references.

- ► Type 0: no pole at the origin. This is what we had without the I-gain: nonzero SS error to constant references.
- ▶ Type 1: a single pole at the origin. This is what we get with I-gain: can track (respectively, reject) constant references (respectively, disturbances) with zero error.

- ► Type 0: no pole at the origin. This is what we had without the I-gain: nonzero SS error to constant references.
- ▶ Type 1: a single pole at the origin. This is what we get with I-gain: can track (respectively, reject) constant references (respectively, disturbances) with zero error.
 - can check that we have a nonzero (but finite) error when tracking ramp references

- ► Type 0: no pole at the origin. This is what we had without the I-gain: nonzero SS error to constant references.
- ▶ Type 1: a single pole at the origin. This is what we get with I-gain: can track (respectively, reject) constant references (respectively, disturbances) with zero error.
 - ► can check that we have a nonzero (but finite) error when tracking ramp references
- ▶ Type 2: a double pole at the origin. Can track ramp references without error, but not $t^2, t^3, ...$

P-gain simplest to implement, but not always sufficient for stabilization

- P-gain simplest to implement, but not always sufficient for stabilization
- D-gain helps achieve stability, improves time response (more control over pole locations)

- P-gain simplest to implement, but not always sufficient for stabilization
- D-gain helps achieve stability, improves time response (more control over pole locations)
 - arbitrary pole placement only valid for 2nd-order response; in general, we still have control over two dominant poles

- P-gain simplest to implement, but not always sufficient for stabilization
- D-gain helps achieve stability, improves time response (more control over pole locations)
 - ▶ arbitrary pole placement only valid for 2nd-order response; in general, we still have control over two *dominant poles*
 - cannot be implemented directly, so need approximate implementation; D-gain also amplifies noise

- P-gain simplest to implement, but not always sufficient for stabilization
- D-gain helps achieve stability, improves time response (more control over pole locations)
 - ▶ arbitrary pole placement only valid for 2nd-order response; in general, we still have control over two *dominant poles*
 - ► cannot be implemented directly, so need approximate implementation; D-gain also amplifies noise
 - I-gain essential for perfect steady-state tracking of constant reference and rejection of constant disturbance

- P-gain simplest to implement, but not always sufficient for stabilization
- D-gain helps achieve stability, improves time response (more control over pole locations)
 - ▶ arbitrary pole placement only valid for 2nd-order response; in general, we still have control over two *dominant poles*
 - cannot be implemented directly, so need approximate implementation; D-gain also amplifies noise
 - I-gain essential for perfect steady-state tracking of constant reference and rejection of constant disturbance
 - but 1/s is not a stable element by itself, so one must be careful: it can destabilize the system if the feedback loop is broken (integrator wind-up)