Plan of the Lecture

- **Review:** Nyquist stability criterion
- **Today’s topic:** Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots.

Goal: explore more examples of the Nyquist criterion in action.

Reading: FPE, Chapter 6
Consider an arbitrary transfer function H.

Nyquist plot: $\text{Im } H(j\omega)$ vs. $\text{Re } H(j\omega)$ as ω varies from $-\infty$ to ∞.

![Nyquist Plot Diagram]
Goal: count the number of RHP poles (if any) of the closed-loop transfer function

\[
\frac{KG(s)}{1 + KG(s)}
\]

based on frequency-domain characteristics of the plant transfer function \(G(s) \)
The Nyquist Theorem

Nyquist Theorem (1928) Assume that $G(s)$ has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point $-1/K$. Then

$$N = Z - P$$

$$\#(\text{ccw of } -1/K \text{ by Nyquist plot of } G(s))$$

$$= \#(\text{RHP closed-loop poles}) - \#(\text{RHP open-loop poles})$$

* Easy to fix: draw an infinitesimally small circular path that goes \emph{around} the pole and stays in RHP.
Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of $G(s)$ encircles the point $-1/K$ P times counterclockwise, where P is the number of unstable (RHP) open-loop poles of $G(s)$.
Applying the Nyquist Criterion

Workflow:

\[\text{Bode } M \text{ and } \phi\text{-plots} \quad \rightarrow \quad \text{Nyquist plot} \]

Advantages of Nyquist over Routh–Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)
Example 1 (From Last Lecture)

\[G(s) = \frac{1}{(s + 1)(s + 2)} \]
(no open-loop RHP poles)

Characteristic equation:

\[(s + 1)(s + 2) + K = 0 \quad \iff \quad s^2 + 3s + K + 2 = 0 \]

From Routh, we already know that the closed-loop system is stable for \(K > -2 \).

We will now reproduce this answer using the Nyquist criterion.
Example 1

\[G(s) = \frac{1}{(s + 1)(s + 2)} \quad \text{(no open-loop RHP poles)} \]

Strategy:

- Start with the Bode plot of \(G \)
- Use the Bode plot to graph \(\text{Im } G(j\omega) \) vs. \(\text{Re } G(j\omega) \) for \(0 \leq \omega < \infty \)
- This gives only a portion of the entire Nyquist plot
 \[(\text{Re } G(j\omega), \text{Im } G(j\omega)) , -\infty < \omega < \infty \]

- Symmetry:
 \[G(-j\omega) = \overline{G(j\omega)} \]
 — Nyquist plots are always symmetric w.r.t. the real axis!!
Example 1

\[G(s) = \frac{1}{(s + 1)(s + 2)} \]

(no open-loop RHP poles)

Bode plot:

Nyquist plot:
Example 1: Applying the Nyquist Criterion

\[G(s) = \frac{1}{(s + 1)(s + 2)} \] (no open-loop RHP poles)

Nyquist plot:

\[\#(\text{☉ of } -1/K) = \#(\text{RHP CL poles}) - \#(\text{RHP OL poles}) = 0 \]

\[\implies K \in \mathbb{R} \text{ is stabilizing if and only if } \#(\text{☉ of } -1/K) = 0 \]

- If \(K > 0 \), \(\#(\text{☉ of } -1/K) = 0 \)
- If \(0 < -1/K < 1/2 \),
 \[\#(\text{☉ of } -1/K) > 0 \implies \text{closed-loop stable for } K > -2 \]
Example 2

\[G(s) = \frac{1}{(s - 1)(s^2 + 2s + 3)} = \frac{1}{s^3 + s^2 + s - 3} \]

\#(RHP open-loop poles) = 1 at \(s = 1 \)

Routh: the characteristic polynomial is

\[s^3 + s^2 + s + K - 3 \ — 3rd \ degree \]

— stable if and only if \(K - 3 > 0 \) and \(1 > K - 3 \).

Stability range: \(3 < K < 4 \)

Let’s see how to spot this using the Nyquist criterion ...
Example 2

\[G(s) = \frac{1}{(s - 1)(s^2 + 2s + 3)} \]

(1 open-loop RHP pole)

Bode plot:

Nyquist plot:

\[\omega = 0 \quad M = 1/3, \quad \phi = -180^\circ \]
\[\omega = 1 \quad M = 1/4, \quad \phi = -180^\circ \]
\[\omega \to \infty \quad M \to 0, \quad \phi \to -270^\circ \]
Example 2: Applying the Nyquist Criterion

\[G(s) = \frac{1}{(s - 1)(s^2 + 2s + 3)} \]

(1 open-loop RHP pole)

Nyquist plot:

\[
#(\bigcirc \text{ of } -1/K) = #(RHP \text{ CL poles}) - #(RHP \text{ OL poles}) \]

\[= 1 \]

\[K \in \mathbb{R} \text{ is stabilizing if and only if} \]

\[#(\bigcirc \text{ of } -1/K) = -1 \]

Which points \(-1/K\) are encircled once \(\bigcirc\) by this Nyquist plot?

Only \(-1/3 < -1/K < -1/4\) \[\implies 3 < K < 4 \]
Example 2: Nyquist Criterion and Phase Margin

Closed-loop stability range for \(G(s) = \frac{1}{(s - 1)(s^2 + 2s + 3)} \) is \(3 < K < 4 \) (using either Routh or Nyquist).

We can interpret this in terms of phase margin:

So, in this case, stability \(\iff \) PM > 0 (typical case).
Example 3

\[
G(s) = \frac{s - 1}{(s + 2)(s^2 - s + 1)} = \frac{s - 1}{s^3 + s^2 - s + 2}
\]

Open-loop poles:

\[
s = -2 \quad \text{(LHP)}
\]

\[
s^2 - s + 1 = 0
\]

\[
(s - \frac{1}{2})^2 + \frac{3}{4} = 0
\]

\[
s = \frac{1}{2} \pm j \frac{\sqrt{3}}{2} \quad \text{(RHP)}
\]

∴ 2 RHP poles
Example 3

\[G(s) = \frac{s - 1}{(s + 2)(s^2 - s + 1)} = \frac{s - 1}{s^3 + s^2 - s + 2} \]

Routh:

char. poly. \[s^3 + s^2 - s + 2 + K(s - 1) \]
\[s^2 + s^2 + (K - 1)s + 2 - K \quad (3\text{rd-order}) \]

— stable if and only if

\[K - 1 > 0 \]
\[2 - K > 0 \]
\[K - 1 > 2 - K \]

— stability range is \(\frac{3}{2} < K < 2 \)
Example 3

\[G(s) = \frac{s - 1}{(s + 2)(s^2 - s + 1)} \]

(2 open-loop RHP poles)

\[\phi = 180^\circ \text{ when:} \]

\[\begin{align*}
\triangleright & \quad \omega = 0 \text{ and } \omega \to 0 \\
\triangleright & \quad \omega = 1 / \sqrt{2}:
\end{align*} \]

\[\left. \frac{j\omega - 1}{(j\omega - 1)((j\omega)^2 - j\omega + 1)} \right|_{\omega = 1 / \sqrt{2}} = \frac{j / \sqrt{2} - 1}{\left(\frac{j}{\sqrt{2}} + 2 \right) \left(-\frac{1}{2} - \frac{j}{\sqrt{2}} + 1 \right)} = \frac{2}{3} \]

(need to guess this, e.g., by mouseclicking in Matlab)
Example 3

\[G(s) = \frac{s - 1}{s^3 + s^2 - s + 2} \]

(2 open-loop RHP poles)

Bode plot:

Nyquist plot:

\[
\begin{align*}
\omega &= 0 & M &= 1/2, \phi = 180^\circ \\
\omega &= 1/\sqrt{2} & M &= 2/3, \phi = 180^\circ \\
\omega &\to \infty & M &\to 0, \phi &\to 180^\circ
\end{align*}
\]
Example 3: Applying the Nyquist Criterion

\[G(s) = \frac{s - 1}{s^3 + s^2 - s + 2} \]

(2 open-loop RHP poles)

Nyquist plot:

\[K \in \mathbb{R} \text{ is stabilizing if and only if} \]

\[\#(\circlearrowleft \text{ of } -1/K) = -2 \]

Which points \(-1/K\) are encircled twice \(\circlearrowleft\) by this Nyquist plot?

\[
\#(\circlearrowleft \text{ of } -1/K)
= \#(\text{RHP CL poles})
- \#(\text{RHP OL poles})
= 2
\]

only \(-2/3 < -1/K < -1/2\)

\[\Rightarrow \frac{3}{2} < K < 2 \]
Example 2: Nyquist Criterion and Phase Margin

CL stability range for \(G(s) = \frac{s - 1}{s^3 + s^2 - s + 2} : K \in (3/2, 2) \)

We can interpret this in terms of phase margin:

So, in this case, stability \(\iff \) PM < 0 (atypical case; Nyquist criterion is the only way to resolve this ambiguity of Bode plots).
Stability Margins

How do we determine stability margins (GM & PM) from the Nyquist plot?

GM & PM are defined relative to a given K, so consider Nyquist plot of $KG(s)$ (we only draw the $\omega > 0$ portion):

How do we spot GM & PM?

- GM = $1/M_{180^\circ}$

 — if we divide K by M_{180°, then the Nyquist plot will pass through $(-1, 0)$, giving $M = 1, \phi = 180^\circ$

- PM = ϕ

 — the phase difference from 180° when $M = 1$