Plan of the Lecture

- **Review:** Proportional-Integral-Derivative (PID) control
- **Today’s topic:** introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing the locations of closed-loop poles of a given system as some parameter is varied.

Reading: FPE, Chapter 5

Note!! The way I teach the Root Locus differs a bit from what the textbook does (good news: it is simpler). Still, *pay attention in class!!*
Course structure so far:

modeling — examples
↓
analysis — transfer function, response, stability
↓
design — some simple examples given

We will focus on design from now on.
The Root Locus Design Method
(invented by Walter R. Evans in 1948)

Consider this unity feedback configuration:

\[R \rightarrow + \rightarrow K \rightarrow L(s) \rightarrow Y \]

where

- \(K \) is a constant gain
- \(L(s) = \frac{b(s)}{a(s)} \), where \(a(s) \) and \(b(s) \) are some polynomials
The Root Locus Design Method

Closed-loop transfer function: \[\frac{Y}{R} = \frac{KL(s)}{1 + KL(s)}, \quad L(s) = \frac{b(s)}{a(s)} \]

Closed loop poles are solutions of:

\[1 + KL(s) = 0 \quad \Leftrightarrow \quad L(s) = -\frac{1}{K} \]

\[1 + \frac{Kb(s)}{a(s)} = 0 \]

\[a(s) + Kb(s) = 0 \quad \text{characteristic equation} \]
A Comment on Change of Notation

Note the change of notation:

\[H(s) \text{ or } G(s) = \frac{q(s)}{p(s)} \quad \text{to} \quad L(s) = \frac{b(s)}{a(s)} \]

— the RL method is quite general, so \(L(s) \) is not necessarily the *plant* transfer function, and \(K \) is not necessary *feedback gain* (could be *any parameter*).

E.g., \(L(s) \) and \(K \) may be related to plant transfer function and feedback gain through some transformation.

As long as we can represent the poles of the closed-loop transfer function as roots of the equation \(1 + KL(s) = 0 \) for *some choice* of \(K \) and \(L(s) \), we can apply the RL method.
Towards Quantitative Characterization of Stability

Qualitative description of stability: Routh test gives us a range of K to guarantee stability.

For what values of K do we best satisfy given design specs?
Root Locus and Quantitative Stability

Closed-loop transfer function: \[\frac{Y}{R} = \frac{KL(s)}{1 + KL(s)}, \quad L(s) = \frac{b(s)}{a(s)} \]

For what values of \(K \) do we best satisfy given design specs?

Specs are encoded in pole locations, so:

The *root locus* for \(1 + KL(s) \) is the set of all closed-loop poles, i.e., the roots of

\[1 + KL(s) = 0, \]

as \(K \) varies from 0 to \(\infty \).
A Simple Example

\[L(s) = \frac{1}{s^2 + s} \quad b(s) = 1, \quad a(s) = s^2 + s \]

Characteristic equation: \[a(s) + K b(s) = 0 \]

\[s^2 + s + K = 0 \]

Here, we can just use the quadratic formula:

\[s = -\frac{1 \pm \sqrt{1 - 4K}}{2} = -\frac{1}{2} \pm \frac{\sqrt{1 - 4K}}{2} \]

Root locus = \(\left\{ -\frac{1}{2} \pm \frac{\sqrt{1 - 4K}}{2} : 0 \leq K < \infty \right\} \subset \mathbb{C} \)
Example, continued

\[
\text{Root locus } = \left\{ -\frac{1}{2} \pm \frac{\sqrt{1-4K}}{2} \right\} : 0 \leq K < \infty \subset \mathbb{C}
\]

Let’s plot it in the s-plane:

- start at \(K = 0 \quad \text{the roots are } -\frac{1}{2} \pm \frac{1}{2} \equiv -1, 0 \\
note: these are poles of \(L \) (open-loop poles)
Example, continued

Root locus: \(\left\{ -\frac{1}{2} \pm \frac{\sqrt{1-4K}}{2} : 0 \leq K < \infty \right\} \subset \mathbb{C} \)

- as \(K \) increases from 0, the poles start to move

\[
1 - 4K > 0 \quad \implies \quad 2 \text{ real roots}
\]
\[
K = \frac{1}{4} \quad \implies \quad 1 \text{ real root } s = -\frac{1}{2}
\]
Example, continued

Root locus: \[\left\{ -\frac{1}{2} \pm \frac{\sqrt{1 - 4K}}{2} : 0 \leq K < \infty \right\} \subset \mathbb{C} \]

- as \(K \) increases from 0, the poles start to move

\[K > \frac{1}{4} \quad \implies \quad 2 \text{ complex roots with } \text{Re}(s) = -\frac{1}{2} \]

\((s = -1/2 \text{ is the point of breakaway from the real axis)}\)
Example, continued

Compare this to admissible regions for given specs:

\[t_s \approx \frac{3}{\sigma} \quad \text{want } \sigma \text{ large, can only have } \sigma = \frac{1}{2} \quad (t_s = 6) \]

\[t_r \approx \frac{1.8}{\omega_n} \quad \text{want } \omega_n \text{ large } \implies \text{want } K \text{ large} \]

\[M_p \quad \text{want to be inside the shaded region } \implies \text{want } K \text{ small} \]

\[\text{increase } K \]
Thus, the root locus helps us *visualize the trade-off* between all the specs in terms of K.

However, for order > 2, there will generally be no direct formula for the closed-loop poles as a function of K.

Our goal: develop simple rules for (approximately) sketching the root locus in the general case.
Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for $1 + KL(s)$ is the set of all closed-loop poles, i.e., the roots of

$$1 + KL(s) = 0,$$

as K varies from 0 to ∞.

A point $s \in \mathbb{C}$ is on the RL if and only if

$$L(s) = -\frac{1}{K}$$

for some $K > 0$

negative and real

This gives us an equivalent characterization:

The phase condition: The root locus of $1 + KL(s)$ is the set of all $s \in \mathbb{C}$, such that $\angle L(s) = 180^\circ$, i.e., $L(s)$ is real and negative.
Six Rules for Sketching Root Loci

There are *six rules* for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A — number of branches
- Rule B — start points
- Rule C — end points
- Rule D — real locus
- Rule E — asymptotes
- Rule F — $j\omega$-crossings

Today, we will cover mostly Rules A–C (and a bit of D).
Rule A: Number of Branches

\[
1 + K \frac{b(s)}{a(s)} = 1 + K \frac{s^m + b_1 s^{m-1} + \ldots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n} = 0
\]

\[
\implies (s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n) + K (s^m + b_1 s^{m-1} + \ldots + b_{m-1} s + b_m) = 0
\]

Since \(\text{deg}(a) = n \geq m = \text{deg}(b) \), the characteristic polynomial \(a(s) + Kb(s) = 0 \) has degree \(n \).

The characteristic polynomial has \(n \) solutions (roots), some of which may be repeated. As we vary \(K \), these \(n \) solutions also vary to form \(n \) branches.

Rule A:

\[
\#(\text{branches}) = \text{deg}(a)
\]
The locus starts from $K = 0$. What happens near $K = 0$?

If $a(s) + Kb(s) = 0$ and $K \sim 0$, then $a(s) \approx 0$.

Therefore:

- s is close to a root of $a(s) = 0$, or
- s is close to a pole of $L(s)$

Rule B: branches start at open-loop poles.
Rule C: End Points

What happens to the locus as $K \to \infty$?

$$a(s) + Kb(s) = 0$$

$$b(s) = -\frac{1}{K}a(s)$$

— as $K \to \infty$,

- branches end at the roots of $b(s) = 0$, or
- branches end at zeros of $L(s)$

Rule C: branches end at open-loop zeros.

Note: if $n > m$, we have n branches, but only m zeros. The remaining $n - m$ branches go off to infinity (end at “zeros at infinity”).
Example
PD control of an unstable 2nd-order plant

\[
\begin{align*}
\frac{Y}{R} &= \frac{G_c G_p}{1 + G_c G_p} \\
\text{poles: } 1 + G_c(s)G_p(s) &= 0 \\
1 + (K_P + K_D s) \left(\frac{1}{s^2 - 1} \right) &= 0
\end{align*}
\]

We will examine the impact of varying \(K = K_D \), assuming the ratio \(K_P / K_D \) fixed.
Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K = K_D$, assuming the ratio K_P/K_D fixed.

Let us write the characteristic equation in *Evans form*:

$$1 + \frac{K_D}{K} \left(s + \frac{K_P}{K_D} \right) \left(\frac{1}{s^2 - 1} \right) = 1 + \frac{K \left(s + \frac{K_P}{K_D} \right)}{s^2 - 1} = 0$$

$$L(s) = \frac{s - z_1}{s^2 - 1} \quad \text{zero at} \quad s = z_1 = -\frac{K_P}{K_D} < 0$$
Example

\[L(s) = \frac{s - z_1}{s^2 - 1} \]

- **Rule A:** \[\begin{cases} m = 1 \\ n = 2 \end{cases} \implies 2 \text{ branches} \]
- **Rule B:** branches start at open-loop poles, \[s = \pm 1 \]
- **Rule C:** branches end at open-loop zeros, \[s = z_1, -\infty \]
 (we will see why \(-\infty\) later)

So the root locus will look something like this:
Why does one of the branches go off to $-\infty$?

\[s^2 - 1 + K(s - z_1) = 0 \]
\[s^2 + Ks - (Kz_1 + 1) = 0 \]

\[s = -\frac{K}{2} \pm \sqrt{\frac{K^2}{4} + Kz_1 + 1}, \quad z_1 < 0 \]

as $K \to \infty$, s will be < 0
Is the point \(s = 0 \) on the root locus?

Let’s see if there is any value \(K > 0 \), for which this is possible:

\[
1 + KL(0) = 0
\]

\[
1 + Kz_1 = 0 \quad K = -\frac{1}{z_1} > 0 \text{ does the job}
\]
From Root Locus to Time Response Specs

For concreteness, let’s see what happens when

\[KP/K_D = -z_1 = 2 \quad \text{and} \quad K = K_D = 5 \implies KP = 10 \]

Characteristic equation:

\[
1 + 5 \left(\frac{s + 2}{s^2 - 1} \right) = 0
\]

\[s^2 + 5s + 9 = 0 \]

Relate to 2nd-order response:

\[\omega_n^2 = 9, \ 2\zeta \omega_n = 5 \implies \zeta = 5/6 \]
Main Points

- When zeros are in LHP, \textit{high gain} can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.
- PD control is effective for stabilization because it introduces a zero in LHP.

\textbf{But:} Rules A–C cannot tell the whole story. How do we know which way the branches go, and which pole corresponds to which zero?

\textbf{Rules D–F!!}
Example

Let’s consider

\[L(s) = \frac{s + 1}{s(s + 2)(s + 1)^2 + 1} \]

- **Rule A:** \(m = 1 \), \(n = 4 \) \(\implies \) 4 branches

- **Rule B:** branches start at open-loop poles

 \[s = 0, s = -2, s = -1 \pm j \]

- **Rule C:** branches end at open-loop zeros

 \[s = -1, \pm \infty \]
Example, continued

Three more rules:

- Rule D: real locus
- Rule E: asymptotes
- Rule F: \(j\omega \)-crossings

Rules D and E are both based on the fact that

\[
1 + KL(s) = 0 \text{ for some } K > 0 \iff L(s) < 0
\]
Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

\[1 + KL(s) = 0 \iff \angle L(s) = 180^\circ \]

\[\angle L(s) = \angle \frac{b(s)}{a(s)} \]

\[= \angle \frac{(s - z_1)(s - z_2) \ldots (s - z_m)}{(s - p_1)(s - p_2) \ldots (s - p_n)} \]

\[= \sum_{i=1}^{m} \angle (s - z_i) - \sum_{j=1}^{n} \angle (s - p_j) \]

— this sum must be \(\pm 180^\circ \) for any \(s \) that lies on the RL.
Rule D: Real Locus

So, we try test points:

\[\angle(s_1 - z_1) = 0^\circ \quad (s_1 > z_1) \]
\[\angle(s_1 - p_1) = 180^\circ \quad (s_1 < p_1) \]
\[\angle(s_1 - p_2) = 0^\circ \quad (s_1 > p_2) \]
\[\angle(s_1 - p_3) = -\angle(s_1 - p_4) \]
(conjugate poles cancel)

\[\angle(s_1 - z_1) - [\angle(s_1 - p_1) + \angle(s_1 - p_2) + \angle(s_1 - p_3) + \angle(s_1 - p_4)] \]
\[= 0^\circ - [180^\circ + 0^\circ + 0^\circ] = -180^\circ \quad \checkmark s_1 \text{ is on RL} \]
Rule D: Real Locus

Try more test points:

\[\angle(s_2 - z_1) = 180^\circ \quad (s_2 < z_2) \]
\[\angle(s_2 - p_1) = 180^\circ \quad (s_2 < p_1) \]
\[\angle(s_2 - p_2) = 0^\circ \quad (s_2 > p_2) \]
\[\angle(s_2 - p_3) = -\angle(s_1 - p_4) \]
(conjugate poles cancel)

\[\angle(s_2 - z_1) - [\angle(s_2 - p_1) + \angle(s_2 - p_2) + \angle(s_2 - p_3) + \angle(s_2 - p_4)] = 180^\circ - [180^\circ + 0^\circ + 0^\circ] = 0^\circ \quad \times \text{s}_1 \text{ is not on RL} \]
Rule D: Real Locus

Rule D: If \(s \) is real, then it is on the RL of \(1 + KL \) if and only if there are an odd number of real open-loop poles and zeros to the right of \(s \).

We will cover Rules E and F, and complete the RL for this example, in the next lecture.