
Plan of the Lecture

I Review: control design using frequency response: PI/lead

I Today’s topic: control design using frequency response:
PD/lag, PID/lead+lag

Goal: understand the effect of various types of controllers
(PD/lead, PI/lag) on the closed-loop performance by reading
the open-loop Bode plot; develop frequency-response techniques
for shaping transient and steady-state response using dynamic
compensation

Reading: FPE, Chapter 6



Review: Bode’s Gain-Phase Relationship

G(s) Y
+
�R K

Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

low freq. real zero/pole complex zero/pole

mag. slope n up/down by 1 up/down by 2

phase n× 90◦ up/down by 90◦ up/down by 180◦

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦



Bode’s Gain-Phase Relationship
Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦

This suggests the following rule of thumb:

M = 1

want slope

= �1 here
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I M has slope −2 at ωc

⇒ φ(ωc) = −180◦

⇒ bad (no PM)

I M has slope −1 at ωc

⇒ φ(ωc) = −90◦

⇒ good (PM = 90◦)

— this is an important design guideline!!

(Similar considerations apply when M -plot has positive slope –
depends on the t.f.)



Control Design Using Frequency Response

G(s) Y
+
�R K

Bode’s Gain-Phase Relationship suggests that we can shape the
time response of the closed-loop system by choosing K (or,
more generally, a dynamic controller KD(s)) to tune the Phase
Margin.

In particular, from the quantitative Gain-Phase Relationship,

Magnitude slope(ωc) = −1 =⇒ Phase(ωc) ≈ −90◦

— which gives us PM of 90◦ and consequently good damping.



Lead Controller Design Using Frequency Response
General Procedure

1. Choose K to get desired bandwidth spec w/o lead

2. Choose lead zero and pole to get desired PM
I in general, we should first check PM with the K from 1,

w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

This is an intuitive procedure, but it’s not very precise, requires
trial & error.



Lag Compensation: Bode Plot

D(s) =
s+ z

s+ p
=
z

p

s
z + 1
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ω→∞−−−→ 1

so M → 1 at high
frequencies

I subtracts phase, hence the
term “phase lag”



Lag Compensation: Bode Plot

0.01 0.1 1 10
0.
5.
10.
15.
20.
25.

0.01 0.1 1 10
-60.
-50.
-40.
-30.
-20.
-10.

slope 
= 0

slope 
= -1

slope 
= 0

0�

�90�

z/p

1
zp

I
jω + z

jω + p

ω→0−−−→ z

p

steady-state tracking error:

e(∞) =
sR(s)

1 +D(s)G(s)

∣∣∣
s=0

large z/p =⇒ better s.s. tracking

I lag decreases ωc =⇒ slows down
time response (to compensate,
adjust K or add lead)

I caution: lead increases PM, but
adding lag can undo this

I to mitigate this, choose both z
and p very small, while
maintaining desired ratio z/p



Example

G(s) =
1

(s+ 0.2)(s+ 0.5)

Bode
form=

10(
s
0.2 + 1

) (
s
0.5 + 1

)
Objectives:

I PM ≥ 60◦

I e(∞) ≤ 10% for constant reference (closed-loop tracking
error)

Strategy:

I we will use lag

KD(s) = K
s+ z

s+ p
, z � p

I z and p will be chosen to get good tracking

I PM will be shaped by choosing K

I this is different from what we did for lead (used p and z to
shape PM, then chose K to get desired bandwidth spec)



Step 1: Choose K to Shape PM

Check Bode plot of G(s) to see how much PM it already has:

0.1 1
-40.
-30.
-20.
-10.
0.
10.
20.

0.1 1
-175.
-150.
-125.
-100.
-75.
-50.
-25.

0.2 0.5 1

1

10
slope = 0 slope = -2

slope
= -1

0�

�140�

I from Matlab, ωc ≈ 1

I PM ≈ 40◦

I we want PM = 60◦

φ = −120◦ at ω ≈ 0.573

M = 2.16

— need to decrease K to 1/2.16

A conservative choice (to allow some slack) is K = 1/2.5 = 0.4,
gives ωc ≈ 0.52, PM ≈ 65◦



Step 2: Choose z & p to Shape Tracking Error

So far: KG(s) =
0.4 · 10(

s
0.2 + 1

) (
s
0.5 + 1

)
e(∞) =

1

1 +KG(s)

∣∣∣
s=0

=
1

1 + 4
=

1

5
= 20% (too high)

To have e(∞) ≤ 10%, need KD(0)G(0) ≥ 9:

e(∞) =
1

1 +KD(0)G(0)
≤ 1

1 + 9
= 10%.

So, we need

D(0) =
s+ z

s+ p

∣∣∣
s=0

=
z

p
≥ 9

4
= 2.25 — say, z/p = 2.5

Not to distort PM and ωc, let’s pick z and p an order of
magnitude smaller than ωc ≈ 0.5: z = 0.05, p = 0.02



Overall Design

Plant:

G(s) =
10( s

0.2
+ 1
)( s

0.5
+ 1
)

Controller:

KD(s) = 0.4
s+ 0.05

s+ 0.02
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— the design still needs a bit of refinement ...



Lead & Lag Compensation
Let’s combine the advantages of PD/lead and PI/lag.

Back to our example: G(s) =
10( s

0.2
+ 1
)( s

0.5
+ 1
)
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I from Matlab, ωc ≈ 1

I PM ≈ 40◦

New objectives:

I ωBW ≥ 2

I PM ≥ 60◦

I e(∞) ≤ 1% for const. ref.



Lead & Lag Compensation

What we got before, with lag only:

I Improved PM by adjusting K to decrease ωc.

I This gave ωc ≈ 0.5, whereas now we want a larger ωc

(recall: ωBW ∈ [ωc, 2ωc], so ωc = 0.5 is too small)

So: we need to reshape the phase curve using lead.



Lead & Lag Compensation
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Step 1. Choose K to get ωc ≈ 2
(before lead)

Using Matlab, can check:

at ω = 2, M ≈ 0.24 (with K = 1)

— need K =
1

0.24
≈ 4.1667

— choose K = 4
(gives ωc slightly < 2, but still ok).



Lead & Lag Compensation

K = 4
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Step 2. Decide how much phase lead
is needed, and choose zlead and plead

Using Matlab, can check:

at ω = 2, φ ≈ −160◦

— so PM = 20◦

(in fact, choosing K = 4 made things
worse: it increased ωc and
consequently decreased PM)

We need at least 40◦ phase lead!!

The choice of lead pole/zero must
satisfy

√
zlead · plead ≈ 2 =⇒ zlead · plead = 4



Lead & Lag Compensation
Need at least 40◦ phase lead, while satisfying

√
zlead · plead ≈ 2 =⇒ zlead · plead = 4

Let’s try zlead = 1 and plead = 4 D(s) =
s+ 1
s

4
+ 1
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Phase lead = 37◦ — not enough!!



Lead & Lag Compensation
Need at least 40◦ phase lead, while satisfying

√
zlead · plead ≈ 2 =⇒ zlead · plead = 4

The choice of zlead = 1, plead = 4 gave phase lead = 37◦.

Need to space zlead and plead farther apart:{
zlead = 0.8

plead = 5
=⇒ phase lead = 46◦
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Lead & Lag Compensation

Step 3. Evaluate steady-state tracking and choose zlag, plag to
satisfy specs

So far:

KD(s)︸ ︷︷ ︸
lead
only

G(s) = 4

s

0.8
+ 1

s

5
+ 1

· 10( s

0.2
+ 1
)( s

0.5
+ 1
)

KD(0)G(0) = 40 =⇒ e(∞) =
1

1 +KD(0)G(0)
=

1

1 + 40

— this is not small enough: need 1% =
1

100
=

1

1 + 99

We want D(0) ≥ 99

40
with lag

zlag
plag
≈ 2.5 will do



Lead & Lag Compensation

Need to choose lag pole/zero that are sufficiently small (not to

distort the phase lead too much) and satisfy
zlag
plag
≈ 2.5.

We can stick with our previous design:

zlag = 0.05, plag = 0.02

Overall controller:

4

s

0.8
+ 1

s

5
+ 1︸ ︷︷ ︸

lead (with
gain K = 4 absorbed)

· s+ 0.05

s+ 0.02︸ ︷︷ ︸
lag (not in
Bode form)

(Note: we don’t rewrite lag in Bode form, because zlag/plag is
not incorporated into K.)



Frequency Domain Design Method: Advantages
Design based on Bode plots is good for:

I easily visualizing the concepts
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want this large for
 stability and good
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I evaluating the design and seeing which way to change it

I using experimental data (frequency response of the
uncontrolled system can be measured experimentally)



Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

I exact closed-loop pole placement (root locus is more
suitable for that)

I deciding if a given K is stabilizing or not ...
I we can only measure how far we are from instability (using

GM or PM), if we know that we are stable
I however, we don’t have a way of checking whether a given
K is stabilizing from frequency response data

What we want is a frequency-domain substitute for the
Routh–Hurwitz criterion — this is the Nyquist criterion, which
we will discuss in the next lecture.


