Plan of the Lecture

» Review: Bode plots for three types of transfer functions
» Today’s topic: stability from frequency response; gain and

phase margins

Goal: learn to read off stability properties of the closed-loop
system from the Bode plot of the open-loop transfer function;
define and calculate Gain and Phase Margins, important
quantitative measures of “distance to instability.”

Reading: FPE, Section 6.1



Stability from Frequency Response

Consider this unity feedback configuration:

R——t@—> K —|aG(s) Y

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?



Stability from Frequency Response

R—“L»Q—» K —|G(s) Y

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?

One answer: use root locus.

Points on the root locus satisfy the characteristic equation

1+ KG(s)=0 >  KG(s)=—1 (@)G(s):—%>

If s € C is on the RL, then

|IKG(s)| =1 and ZKG(s) = ZG(s) = 180° mod 360°



Stability from Frequency Response

R—_'—_?— K |—|as) Y

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?

Another answer: let’s look at the Bode plots:

wir— |[KG(jw)| on log-log scale
wr— LKG(jw) on log-linear scale

— Bode plots show us magnitude and phase, but only for
s =jw, ) <w <00

How does this relate to the root locus? jw-crossings!!



Stability from Frequency Response

R—_'—_?— K |—|G(s) Y

Stability from frequency response. If s = jw is on the root
locus (for some value of K), then

|IKG(jw)| =1 and  ZKG(jw) = 180° mod 360°

Therefore, the transition from stability to instability can be
detected in two different ways:

» from root locus — as jw-crossings

» from Bode plots — as M =1 and ¢ = 180° at some
frequency w (for a given value of K)



Example

K

KOO = ety

Characteristic equation:
n K
s(s? + 25+ 2)
s(s°+25+2)+ K =0
4252425+ K =0

Recall the necessary & sufficient condition for stability for a
3rd-degree polynomial s + a1s® + ags + a3:

ai,ag,as3 > 0, aias > as.

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let’s see what we can read off from the Bode plots.



Example, continued

K
s(s? 4 2s + 2)
K

2jw ((fT) + jw + 1)

KG(s) =

Bode form: KG(jw) =

Plot the magnitude first:

K2

» Type 1 (low-frequency) asymptote: ——
Jjw

Ky=K/2, n=—-1 = slope = —1, passes through
(w=1,M = K/2)

» Type 3 (complex pole) asymptote:
break-point at w = V2 — slope down by 2

1
» ( = —= = no reasonant peak

V2



Example, Magnitude Plot

K
2je (L) + jw+1)

Magnitude plot for K = 4 (the critical value):

KG(jw) =

M

[ ) H
0.001 001 0.1 1 10

When w = v/2, M = [4G(jw)| =

V22 +V2+1)



Example, Phase Plot

K

KGUw) = 2jw ((17) + Jw + 1)

Phase plot (independent of K):

b= —180°

I
0.001 001

When w = v/2, ¢ = —180°



For the critical value
K = 4:

M =1 and ¢ = 180°
mod 360° at w = /2

$=-180°F

0.001 0.01 0.1 1 10



Crossover Frequency and Stability

Definition: The frequency at which M =1 is called the
crossover frequency and denoted by we.

C Il Il
0.001 001 0.1 1 10

Transition from stability to instability on the Bode plot:

for critical K, ZG(jwe) = 180°



Effect of Varying K

0001 001 01 1

10

— K=2
— K=4
- — K=8

0.001 001 0.1 1

10

What happens as we vary K7
> ¢ independent of K —

only the M-plot changes
If we multiply K by 2:

log(2M) = log 2 + log M
— M-plot shifts up by log 2
If we divide K by 2:

1 1
log(iM) = log 3 + log M
= —log2+logM

— M-plot shifts down by
log 2

Changing the value of K moves the crossover frequency w,!!



Effect of Varying K

Changing the value of K moves the crossover frequency w,!!

What happens as we vary K7

> —180°, for K <4

0001 001 01 1 10 (stable)
/KG(jew,) = —180°, for K =4
i (critical)
T K=2 < —180°, for K >4
- — K=4 { (unstable)
- — K=8

0.001 0.01 0.1 1 10



Effect of Varying K

Changing the value of K moves the crossover frequency w,!!

Equivalently, we may define
wigge as the frequency at which

¢ =180° mod 360°.

Then, in this example*,

0001 001 01 1 10

|KG(jwisoe)| <1 +— stability
|KG(jwigoe)| > 1 <— instability

- — K=2
. — K=4
- — K=8
0.001 0.61 011 l 16

* Not a general rule; conditions will

vary depending on the system, must
use either root locus or Nyquist plot
to resolve ambiguity.




Stability from Frequency Response

Consider this unity feedback configuration:

R——f—_?— K |—|G(s) Y

Suppose that the closed-loop system, with transfer function

KG(s)
1+ KG(s)’

is stable for a given value of K.

Question: Can we use the Bode plot to determine how far
from instability we are?

Two important characteristics: gain margin (GM) and phase
margin (PM).



Gain Margin
1

= ——5————, K =2 (stabl
s(s2+2s5+2)’ (stable)

Back to our example: G(s)

Gain margin (GM) is the
factor by which K can be
‘ multiplied before we get
0001 001 01 1 10 M =1 when ¢ = 180°

Since varying K doesn’t change
wigpe, to find GM we need to
inspect M at w = wiggo

0.001 0.01 0.1 1 10



Gain Margin
1
Our example: G(s) = S5 12) K =2 (stable)

Gain margin (GM) is the
factor by which K can be
multiplied before we get
M =1 when ¢ = 180°

Since varying K doesn’t change
wigpe, to find GM we need to
inspect M at w = wiggo

In this example:
at wigge = V2
M =0.5(—6 dB),
0001 001 0.1 1 10 so GM =2




Phase Margin

_ 1
Cos(s24+25+2)
Phase margin (PM) is the
amount by which the phase at

the crossover frequency w,
differs from 180° mod 360°

Our example: G(s) K =2 (stable)

To find PM, we need to inspect
¢ at w = w,

In this example:

at w. ~ 0.92
¢ = —148°,
so PM = (—148°) — (—180°) = 32°

—_— — — — — —

0.001 001 0.1 10 (in practice, want PM > 30°)



Example 2

G(S):m <,wn>0

Consider gain K = 1, which gives closed-loop transfer function

w2

KG(s) i
1+ KG(s) w?
* 52 + 2Cwps
w2

= n — prototype 2nd-order response

$2 + 2Cwps + w?

Question: what is the gain margin at K =17

Answer: GM = oo



Example 2

w2

Gw) = g = :
+ 2¢wn o (3w

Wn

Let’s look at the phase plot:
» starts at —90° (Type 1 term with n = —1)
» goes down by —90° (Type 2 pole)

—90°

~180° : : : :
Recall: to find GM, we first need to find wigge, and here there is
no such w = no GM.



Example 2

So, at K = 1, the gain margin of

w2 w2

G(s) = T QnCwns " s(s+ ngn)

is equal to co — what does that mean?

It means that we can keep on increasing K indefinitely without
ever encountering instability.

But we already knew that: the characteristic polynomial is
_ 2 2
p(S) =5+ 2Cwns + Wy

which is always stable.

What about phase margin?



Example 2: Phase Margin

w2

G(jw) = — L — = ;
G) (Jw)? + 2Cwnjw  9¢ <227Zn+1>

Wn

Let’s look at the magnitude plot:
» low-frequency asymptote slope —1 (Type 1 term, n = —1)
» slope down by 1 past the breakpt. w = 2¢w,, (Type 2 pole)

= there is a finite crossover frequency w.!!

M=1f o2

slope =-2




Example 2: Magnitude Plot

Wn

Gjw) = b B
(jw) (jw)? 4+ 2¢wpjw 2CJw (2<w +1)

We

It can be shown that, for this system,

1 2¢
PMK:l_tan ( /4<.4+1_2C2>

— for PM < 70°, a good approximation is PM = 100 - ¢



Phase Margin for 2nd-Order System

w2

i) = —- 2~ .
+2 n y w

Wn

a1 2¢ N _
PM| = tan (x/W—?CQ) ~100- ¢

Conclusions:

larger PM <= better damping

(open-loop quantity) (closed-loop characteristic)

_ ¢
Thus, the overshoot M), = exp < m) and resonant peak
= L __ _ 1
M, YV 1 are both related to PM through ¢!!



Preview: Bode’s Gain-Phase Relationship

In the next lecture, we will see the following more generally:

Bode’s Gain-Phase Relationship: all important
characteristics of the closed-loop time response
can be related to the phase margin of the

) open-loop transfer function!!
Hendrik Wade Bode

(1905-1982)

In fact, we will use a quantitative statement of this relationship
as a design guideline.



